/
/
Daily Arxiv
Daily Arxiv
世界中で発行される人工知能関連の論文をまとめるページです。
このページはGoogle Geminiを活用して要約し、非営利で運営しています。
論文の著作権は著者および関連機関にあり、共有する際は出典を明記してください。
Merge-of-Thought Distillation
OTESGN: Optimal Transport-Enhanced Syntactic-Semantic Graph Networks for Aspect-Based Sentiment Analysis
MESH - Understanding Videos Like Human: Measuring Hallucinations in Large Video Models
Adapting Vision-Language Models for Neutrino Event Classification in High-Energy Physics
Symmetry-Guided Multi-Agent Inverse Reinforcement Learning
AU-Harness: An Open-Source Toolkit for Holistic Evaluation of Audio LLMs
Expert-Guided Explainable Few-Shot Learning for Medical Image Diagnosis
Towards Generalized Routing: Model and Agent Orchestration for Adaptive and Efficient Inference
MachineLearningLM: Scaling Many-shot In-context Learning via Continued Pretraining
Demo: Healthcare Agent Orchestrator (HAO) for Patient Summarization in Molecular Tumor Boards
Focusing by Contrastive Attention: Enhancing VLMs' Visual Reasoning
Beyond the Pre-Service Horizon: Infusing In-Service Behavior for Improved Financial Risk Forecasting
On Synthesis of Timed Regular Expressions
TinyDef-DETR: A DETR-based Framework for Defect Detection in Transmission Lines from UAV Imagery
LiDAR-BIND-T: Improved and Temporally Consistent Sensor Modality Translation and Fusion for Robotic Applications
From Vision to Validation: A Theory- and Data-Driven Construction of a GCC-Specific AI Adoption Index
A Comprehensive Guide to Differential Privacy: From Theory to User Expectations
The Architecture of AI Transformation: Four Strategic Patterns and an Emerging Frontier
FLM-Audio: Natural Monologues Improves Native Full-Duplex Chatbots via Dual Training
Deep Learning-Based Rock Particulate Classification Using Attention-Enhanced ConvNeXt
The Information Dynamics of Generative Diffusion
Data-Augmented Few-Shot Neural Stencil Emulation for System Identification of Computer Models
Group Expectation Policy Optimization for Heterogeneous Reinforcement Learning
Pretrained Conformers for Audio Fingerprinting and Retrieval
Towards Scalable Training for Handwritten Mathematical Expression Recognition
To Theoretically Understand Transformer-Based In-Context Learning for Optimizing CSMA
Klear-CodeTest: Scalable Test Case Generation for Code Reinforcement Learning
HiD-VAE: Interpretable Generative Recommendation via Hierarchical and Disentangled Semantic IDs
MagicGUI: A Foundational Mobile GUI Agent with Scalable Data Pipeline and Reinforcement Fine-tuning
Villa-X: Enhancing Latent Action Modeling in Vision-Language-Action Models
New Kid in the Classroom: Exploring Student Perceptions of AI Coding Assistants
Can Large Language Models Understand As Well As Apply Patent Regulations to Pass a Hands-On Patent Attorney Test?
Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound
Uncertainty Estimation by Human Perception versus Neural Models
Persistent Homology of Topic Networks for the Prediction of Reader Curiosity
Task Matters: Knowledge Requirements Shape LLM Responses to Context-Memory Conflict
Crack Path Prediction with Operator Learning using Discrete Particle System data Generation
Diffusion Graph Neural Networks for Robustness in Olfaction Sensors and Datasets
MM-Prompt: Cross-Modal Prompt Tuning for Continual Visual Question Answering
An Ontology-Driven Graph RAG for Legal Norms: A Structural, Temporal, and Deterministic Approach
Combating Falsification of Speech Videos with Live Optical Signatures (Extended Version)
Early Exit and Multi Stage Knowledge Distillation in VLMs for Video Summarization
Critical Challenges and Guidelines in Evaluating Synthetic Tabular Data: A Systematic Review
Parasite: A Steganography-based Backdoor Attack Framework for Diffusion Models
Towards Adaptive Memory-Based Optimization for Enhanced Retrieval-Augmented Generation
Entropy-Gated Branching for Efficient Test-Time Reasoning
SWI: Speaking with Intent in Large Language Models
Byzantine-Robust Federated Learning Using Generative Adversarial Networks
VeriSafe Agent: Safeguarding Mobile GUI Agent via Logic-based Action Verification
MIND: Towards Immersive Psychological Healing with Multi-agent Inner Dialogue
V-HOP: Visuo-Haptic 6D Object Pose Tracking
EgoAgent: A Joint Predictive Agent Model in Egocentric Worlds
Knowledge-Guided Biomarker Identification for Label-Free Single-Cell RNA-Seq Data: A Reinforcement Learning Perspective
MERaLiON-SpeechEncoder: Towards a Speech Foundation Model for Singapore and Beyond
RED: Unleashing Token-Level Rewards from Holistic Feedback via Reward Redistribution
IDEATOR: Jailbreaking and Benchmarking Large Vision-Language Models Using Themselves
DeepVoting: Learning and Fine-Tuning Voting Rules with Canonical Embeddings
Rethinking Disentanglement under Dependent Factors of Variation
Discovering physical laws with parallel symbolic enumeration
Semantic Augmentation in Images using Language
Algorithmic Collusion by Large Language Models
A minimal coalition logic
Deep Reinforcement Learning for Inventory Networks: Toward Reliable Policy Optimization
Inconsistency Handling in Prioritized Databases with Universal Constraints: Complexity Analysis and Links with Active Integrity Constraints
Directly Aligning the Full Diffusion Trajectory with Fine-Grained Human Preference
CogGuide: Human-Like Guidance for Zero-Shot Omni-Modal Reasoning
TreeGPT: Pure TreeFFN Encoder-Decoder Architecture for Structured Reasoning Without Attention Mechanisms
Robix: A Unified Model for Robot Interaction, Reasoning and Planning
KROMA: Ontology Matching with Knowledge Retrieval and Large Language Models
Scaling LLM Planning: NL2FLOW for Parametric Problem Generation and Rigorous Evaluation
Optimizing Length Compression in Large Reasoning Models
LLMs for sensory-motor control: Combining in-context and iterative learning
Effort-aware Fairness: Incorporating a Philosophy-informed, Human-centered Notion of Effort into Algorithmic Fairness Metrics
Simulating Human-like Daily Activities with Desire-driven Autonomy
Enhancing Few-Shot Transfer Learning with Optimized Multi-Task Prompt Tuning through Modular Prompt Composition
ButterflyQuant: Ultra-low-bit LLM Quantization through Learnable Orthogonal Butterfly Transforms
CDE: Curiosity-Driven Exploration for Efficient Reinforcement Learning in Large Language Models
SimpleVLA-RL: Scaling VLA Training via Reinforcement Learning
Feasibility-Guided Fair Adaptive Offline Reinforcement Learning for Medicaid Care Management
Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations
Explaining Concept Drift through the Evolution of Group Counterfactuals
LoCoBench: A Benchmark for Long-Context Large Language Models in Complex Software Engineering
Mechanistic Learning with Guided Diffusion Models to Predict Spatio-Temporal Brain Tumor Growth
Graph Alignment via Dual-Pass Spectral Encoding and Latent Space Communication
ObjectReact: Learning Object-Relative Control for Visual Navigation
Fluent but Unfeeling: The Emotional Blind Spots of Language Models
Invisible Attributes, Visible Biases: Exploring Demographic Shortcuts in MRI-based Alzheimer's Disease Classification
An improved educational competition optimizer with multi-covariance learning operators for global optimization problems
Improving Video Diffusion Transformer Training by Multi-Feature Fusion and Alignment from Self-Supervised Vision Encoders
A modified RIME algorithm with covariance learning and diversity enhancement for numerical optimization
Towards Explainable Job Title Matching: Leveraging Semantic Textual Relatedness and Knowledge Graphs
Explainable AI for Accelerated Microstructure Imaging: A SHAP-Guided Protocol on the Connectome 2.0 scanner
Incorporating AI Incident Reporting into Telecommunications Law and Policy: Insights from India
OpenFake: An Open Dataset and Platform Toward Large-Scale Deepfake Detection
Prompt Pirates Need a Map: Stealing Seeds helps Stealing Prompts
Resource-Efficient Glioma Segmentation on Sub-Saharan MRI
ENSI: Efficient Non-Interactive Secure Inference for Large Language Models
We're Still Doing It (All) Wrong: Recommender Systems, Fifteen Years Later
LLMs Don't Know Their Own Decision Boundaries: The Unreliability of Self-Generated Counterfactual Explanations
MetaLLMix : An XAI Aided LLM-Meta-learning Based Approach for Hyper-parameters Optimization
Load more
Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound
Created by
Haebom
作者
Yuhao Huang, Yueyue Xu, Haoran Dou, Jiaxiao Deng, Xin Yang, Hongyu Zheng, Dong Ni
概要
先天性子宮奇形(CUA)は、不妊、流産、早産、妊娠合併症のリスクの増加を引き起こす可能性があります。従来の2D超音波(US)と比較して、3D USはコロナ面を再構成して子宮の形状を明確に可視化し、CUAを正確に評価できます。本論文では,子宮超音波イメージングにおける平面位置検出とCUA診断を同時に自動化するインテリジェントシステムを提案する。主な内容は次のとおりです。 1)地域(平面)およびグローバル(ボリューム/テキスト)ガイドを使用したノイズ除去拡散モデルを開発し、さまざまな条件に対する注意集中を最適化するための適応的な重み付け戦略を使用します。 2)非マップ補償を使用する強化学習ベースのフレームワークを導入して、冗長シーケンスから主要なスライス要約を抽出し、複数の平面の情報を完全に統合して学習の難易度を減らします。 3)テキストベースの不確実性モデリングを使用して粗大な予測を提供し、全体的なパフォーマンスを向上させるために分類確率を調整するために使用します。大規模な3D子宮超音波データセットの広範な実験を通して、平面位置決めとCUA診断の観点から提案された方法の効果を示しています。コードは
https://github.com/yuhoo0302/CUA-US
で利用可能です。
GitHub - yuhoo0302/CUA-US
Contribute to yuhoo0302/CUA-US development by creating an account on GitHub.
github.com
Takeaways、Limitations
•
Takeaways:
◦
3D子宮超音波画像を用いた先天性子宮奇形(CUA)診断の精度向上
◦
自動化された平面位置決めとCUA診断システムの開発による診断効率の向上
◦
ノイズ除去拡散モデル、強化学習、テキストベースの不確実性モデリングなど、さまざまなディープラーニング技術の効果的な統合
◦
大規模なデータセットを活用した実験による性能検証
◦
公開されたコードで再現性を確保し、さらに研究可能。
•
Limitations:
◦
提案された方法の一般化性能に関するさらなる研究の必要性様々な子宮形態と超音波機器の影響の評価が必要
◦
データセットの偏りが結果に与える可能性がある影響の分析が必要です。
◦
臨床的検証のためのさらなる研究の必要性。実際の臨床環境における性能評価と医療スタッフのフィードバックの反映が必要
PDFを見る
Made with Slashpage