/
/
Daily Arxiv
Daily Arxiv
世界中で発行される人工知能関連の論文をまとめるページです。
このページはGoogle Geminiを活用して要約し、非営利で運営しています。
論文の著作権は著者および関連機関にあり、共有する際は出典を明記してください。
Merge-of-Thought Distillation
OTESGN: Optimal Transport-Enhanced Syntactic-Semantic Graph Networks for Aspect-Based Sentiment Analysis
MESH - Understanding Videos Like Human: Measuring Hallucinations in Large Video Models
Adapting Vision-Language Models for Neutrino Event Classification in High-Energy Physics
Symmetry-Guided Multi-Agent Inverse Reinforcement Learning
AU-Harness: An Open-Source Toolkit for Holistic Evaluation of Audio LLMs
Expert-Guided Explainable Few-Shot Learning for Medical Image Diagnosis
Towards Generalized Routing: Model and Agent Orchestration for Adaptive and Efficient Inference
MachineLearningLM: Scaling Many-shot In-context Learning via Continued Pretraining
Demo: Healthcare Agent Orchestrator (HAO) for Patient Summarization in Molecular Tumor Boards
Focusing by Contrastive Attention: Enhancing VLMs' Visual Reasoning
Beyond the Pre-Service Horizon: Infusing In-Service Behavior for Improved Financial Risk Forecasting
On Synthesis of Timed Regular Expressions
TinyDef-DETR: A DETR-based Framework for Defect Detection in Transmission Lines from UAV Imagery
LiDAR-BIND-T: Improved and Temporally Consistent Sensor Modality Translation and Fusion for Robotic Applications
From Vision to Validation: A Theory- and Data-Driven Construction of a GCC-Specific AI Adoption Index
A Comprehensive Guide to Differential Privacy: From Theory to User Expectations
The Architecture of AI Transformation: Four Strategic Patterns and an Emerging Frontier
FLM-Audio: Natural Monologues Improves Native Full-Duplex Chatbots via Dual Training
Deep Learning-Based Rock Particulate Classification Using Attention-Enhanced ConvNeXt
The Information Dynamics of Generative Diffusion
Data-Augmented Few-Shot Neural Stencil Emulation for System Identification of Computer Models
Group Expectation Policy Optimization for Heterogeneous Reinforcement Learning
Pretrained Conformers for Audio Fingerprinting and Retrieval
Towards Scalable Training for Handwritten Mathematical Expression Recognition
To Theoretically Understand Transformer-Based In-Context Learning for Optimizing CSMA
Klear-CodeTest: Scalable Test Case Generation for Code Reinforcement Learning
HiD-VAE: Interpretable Generative Recommendation via Hierarchical and Disentangled Semantic IDs
MagicGUI: A Foundational Mobile GUI Agent with Scalable Data Pipeline and Reinforcement Fine-tuning
Villa-X: Enhancing Latent Action Modeling in Vision-Language-Action Models
New Kid in the Classroom: Exploring Student Perceptions of AI Coding Assistants
Can Large Language Models Understand As Well As Apply Patent Regulations to Pass a Hands-On Patent Attorney Test?
Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound
Uncertainty Estimation by Human Perception versus Neural Models
Persistent Homology of Topic Networks for the Prediction of Reader Curiosity
Task Matters: Knowledge Requirements Shape LLM Responses to Context-Memory Conflict
Crack Path Prediction with Operator Learning using Discrete Particle System data Generation
Diffusion Graph Neural Networks for Robustness in Olfaction Sensors and Datasets
MM-Prompt: Cross-Modal Prompt Tuning for Continual Visual Question Answering
An Ontology-Driven Graph RAG for Legal Norms: A Structural, Temporal, and Deterministic Approach
Combating Falsification of Speech Videos with Live Optical Signatures (Extended Version)
Early Exit and Multi Stage Knowledge Distillation in VLMs for Video Summarization
Critical Challenges and Guidelines in Evaluating Synthetic Tabular Data: A Systematic Review
Parasite: A Steganography-based Backdoor Attack Framework for Diffusion Models
Towards Adaptive Memory-Based Optimization for Enhanced Retrieval-Augmented Generation
Entropy-Gated Branching for Efficient Test-Time Reasoning
SWI: Speaking with Intent in Large Language Models
Byzantine-Robust Federated Learning Using Generative Adversarial Networks
VeriSafe Agent: Safeguarding Mobile GUI Agent via Logic-based Action Verification
MIND: Towards Immersive Psychological Healing with Multi-agent Inner Dialogue
V-HOP: Visuo-Haptic 6D Object Pose Tracking
EgoAgent: A Joint Predictive Agent Model in Egocentric Worlds
Knowledge-Guided Biomarker Identification for Label-Free Single-Cell RNA-Seq Data: A Reinforcement Learning Perspective
MERaLiON-SpeechEncoder: Towards a Speech Foundation Model for Singapore and Beyond
RED: Unleashing Token-Level Rewards from Holistic Feedback via Reward Redistribution
IDEATOR: Jailbreaking and Benchmarking Large Vision-Language Models Using Themselves
DeepVoting: Learning and Fine-Tuning Voting Rules with Canonical Embeddings
Rethinking Disentanglement under Dependent Factors of Variation
Discovering physical laws with parallel symbolic enumeration
Semantic Augmentation in Images using Language
Algorithmic Collusion by Large Language Models
A minimal coalition logic
Deep Reinforcement Learning for Inventory Networks: Toward Reliable Policy Optimization
Inconsistency Handling in Prioritized Databases with Universal Constraints: Complexity Analysis and Links with Active Integrity Constraints
Directly Aligning the Full Diffusion Trajectory with Fine-Grained Human Preference
CogGuide: Human-Like Guidance for Zero-Shot Omni-Modal Reasoning
TreeGPT: Pure TreeFFN Encoder-Decoder Architecture for Structured Reasoning Without Attention Mechanisms
Robix: A Unified Model for Robot Interaction, Reasoning and Planning
KROMA: Ontology Matching with Knowledge Retrieval and Large Language Models
Scaling LLM Planning: NL2FLOW for Parametric Problem Generation and Rigorous Evaluation
Optimizing Length Compression in Large Reasoning Models
LLMs for sensory-motor control: Combining in-context and iterative learning
Effort-aware Fairness: Incorporating a Philosophy-informed, Human-centered Notion of Effort into Algorithmic Fairness Metrics
Simulating Human-like Daily Activities with Desire-driven Autonomy
Enhancing Few-Shot Transfer Learning with Optimized Multi-Task Prompt Tuning through Modular Prompt Composition
ButterflyQuant: Ultra-low-bit LLM Quantization through Learnable Orthogonal Butterfly Transforms
CDE: Curiosity-Driven Exploration for Efficient Reinforcement Learning in Large Language Models
SimpleVLA-RL: Scaling VLA Training via Reinforcement Learning
Feasibility-Guided Fair Adaptive Offline Reinforcement Learning for Medicaid Care Management
Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations
Explaining Concept Drift through the Evolution of Group Counterfactuals
LoCoBench: A Benchmark for Long-Context Large Language Models in Complex Software Engineering
Mechanistic Learning with Guided Diffusion Models to Predict Spatio-Temporal Brain Tumor Growth
Graph Alignment via Dual-Pass Spectral Encoding and Latent Space Communication
ObjectReact: Learning Object-Relative Control for Visual Navigation
Fluent but Unfeeling: The Emotional Blind Spots of Language Models
Invisible Attributes, Visible Biases: Exploring Demographic Shortcuts in MRI-based Alzheimer's Disease Classification
An improved educational competition optimizer with multi-covariance learning operators for global optimization problems
Improving Video Diffusion Transformer Training by Multi-Feature Fusion and Alignment from Self-Supervised Vision Encoders
A modified RIME algorithm with covariance learning and diversity enhancement for numerical optimization
Towards Explainable Job Title Matching: Leveraging Semantic Textual Relatedness and Knowledge Graphs
Explainable AI for Accelerated Microstructure Imaging: A SHAP-Guided Protocol on the Connectome 2.0 scanner
Incorporating AI Incident Reporting into Telecommunications Law and Policy: Insights from India
OpenFake: An Open Dataset and Platform Toward Large-Scale Deepfake Detection
Prompt Pirates Need a Map: Stealing Seeds helps Stealing Prompts
Resource-Efficient Glioma Segmentation on Sub-Saharan MRI
ENSI: Efficient Non-Interactive Secure Inference for Large Language Models
We're Still Doing It (All) Wrong: Recommender Systems, Fifteen Years Later
LLMs Don't Know Their Own Decision Boundaries: The Unreliability of Self-Generated Counterfactual Explanations
MetaLLMix : An XAI Aided LLM-Meta-learning Based Approach for Hyper-parameters Optimization
Load more
KROMA: Ontology Matching with Knowledge Retrieval and Large Language Models
Created by
Haebom
作者
Lam Nguyen, Erika Barcelos, Roger French, Yinghui Wu
概要
KROMAは、大規模言語モデル(LLM)を活用してオントロジーマッチング(OM)操作の意味的コンテキストを動的に豊かにする新しいOMフレームワークです。既存のシステムの制限的な適応性問題を解決するために、検索拡張生成(RAG)パイプライン内のLLMを活用して、構造的、語彙的、定義的な知識を活用します。パフォーマンスと効率を同時に最適化するために、類似性ベースの概念マッチングと軽量オントロジー改善ステップを統合して候補概念を排除し、LLM呼び出しによる通信のオーバーヘッドを大幅に削減します。複数のベンチマークデータセットの実験により、文脈豊富なLLMと知識検索を統合することで、従来のOMシステムと最先端のLLMベースのアプローチを上回るパフォーマンスを達成しながら、通信オーバーヘッドは同様に維持できます。本研究は、大規模なオントロジーマッチングのための提案された最適化手法(目標知識検索、プロンプトリッチ化、オントロジー改善)の実現可能性と利点を強調しています。
Takeaways、Limitations
•
Takeaways:
◦
LLMとRAGパイプラインを組み合わせることで、オントロジーマッチングのパフォーマンスと効率を大幅に向上させることができます。
◦
目標知識検索、プロンプトリッチ化、オントロジー改善などの最適化手法の効果を実証的に実証します。
◦
既存のOMシステムと最先端のLLMベースのアプローチを上回るパフォーマンスを実現します。
◦
大規模なオントロジーマッチング問題に対する実用的な解決策を提示します。
•
Limitations:
◦
特定のLLMに依存する可能性があり、LLMのパフォーマンスによっては結果が影響を受ける可能性があります。
◦
使用されるベンチマークデータセットの制限により、一般化の可能性に関するさらなる研究が必要です。
◦
軽量オントロジー改善段階の最適化パラメータの設定に関するさらなる研究が必要となる場合がある。
◦
様々な種類のオントロジーに対する適用性と一般化の可能性に関するさらなる研究が必要である。
PDFを見る
Made with Slashpage