/
/
Daily Arxiv
Daily Arxiv
世界中で発行される人工知能関連の論文をまとめるページです。
このページはGoogle Geminiを活用して要約し、非営利で運営しています。
論文の著作権は著者および関連機関にあり、共有する際は出典を明記してください。
Merge-of-Thought Distillation
OTESGN: Optimal Transport-Enhanced Syntactic-Semantic Graph Networks for Aspect-Based Sentiment Analysis
MESH - Understanding Videos Like Human: Measuring Hallucinations in Large Video Models
Adapting Vision-Language Models for Neutrino Event Classification in High-Energy Physics
Symmetry-Guided Multi-Agent Inverse Reinforcement Learning
AU-Harness: An Open-Source Toolkit for Holistic Evaluation of Audio LLMs
Expert-Guided Explainable Few-Shot Learning for Medical Image Diagnosis
Towards Generalized Routing: Model and Agent Orchestration for Adaptive and Efficient Inference
MachineLearningLM: Scaling Many-shot In-context Learning via Continued Pretraining
Demo: Healthcare Agent Orchestrator (HAO) for Patient Summarization in Molecular Tumor Boards
Focusing by Contrastive Attention: Enhancing VLMs' Visual Reasoning
Beyond the Pre-Service Horizon: Infusing In-Service Behavior for Improved Financial Risk Forecasting
On Synthesis of Timed Regular Expressions
TinyDef-DETR: A DETR-based Framework for Defect Detection in Transmission Lines from UAV Imagery
LiDAR-BIND-T: Improved and Temporally Consistent Sensor Modality Translation and Fusion for Robotic Applications
From Vision to Validation: A Theory- and Data-Driven Construction of a GCC-Specific AI Adoption Index
A Comprehensive Guide to Differential Privacy: From Theory to User Expectations
The Architecture of AI Transformation: Four Strategic Patterns and an Emerging Frontier
FLM-Audio: Natural Monologues Improves Native Full-Duplex Chatbots via Dual Training
Deep Learning-Based Rock Particulate Classification Using Attention-Enhanced ConvNeXt
The Information Dynamics of Generative Diffusion
Data-Augmented Few-Shot Neural Stencil Emulation for System Identification of Computer Models
Group Expectation Policy Optimization for Heterogeneous Reinforcement Learning
Pretrained Conformers for Audio Fingerprinting and Retrieval
Towards Scalable Training for Handwritten Mathematical Expression Recognition
To Theoretically Understand Transformer-Based In-Context Learning for Optimizing CSMA
Klear-CodeTest: Scalable Test Case Generation for Code Reinforcement Learning
HiD-VAE: Interpretable Generative Recommendation via Hierarchical and Disentangled Semantic IDs
MagicGUI: A Foundational Mobile GUI Agent with Scalable Data Pipeline and Reinforcement Fine-tuning
Villa-X: Enhancing Latent Action Modeling in Vision-Language-Action Models
New Kid in the Classroom: Exploring Student Perceptions of AI Coding Assistants
Can Large Language Models Understand As Well As Apply Patent Regulations to Pass a Hands-On Patent Attorney Test?
Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound
Uncertainty Estimation by Human Perception versus Neural Models
Persistent Homology of Topic Networks for the Prediction of Reader Curiosity
Task Matters: Knowledge Requirements Shape LLM Responses to Context-Memory Conflict
Crack Path Prediction with Operator Learning using Discrete Particle System data Generation
Diffusion Graph Neural Networks for Robustness in Olfaction Sensors and Datasets
MM-Prompt: Cross-Modal Prompt Tuning for Continual Visual Question Answering
An Ontology-Driven Graph RAG for Legal Norms: A Structural, Temporal, and Deterministic Approach
Combating Falsification of Speech Videos with Live Optical Signatures (Extended Version)
Early Exit and Multi Stage Knowledge Distillation in VLMs for Video Summarization
Critical Challenges and Guidelines in Evaluating Synthetic Tabular Data: A Systematic Review
Parasite: A Steganography-based Backdoor Attack Framework for Diffusion Models
Towards Adaptive Memory-Based Optimization for Enhanced Retrieval-Augmented Generation
Entropy-Gated Branching for Efficient Test-Time Reasoning
SWI: Speaking with Intent in Large Language Models
Byzantine-Robust Federated Learning Using Generative Adversarial Networks
VeriSafe Agent: Safeguarding Mobile GUI Agent via Logic-based Action Verification
MIND: Towards Immersive Psychological Healing with Multi-agent Inner Dialogue
V-HOP: Visuo-Haptic 6D Object Pose Tracking
EgoAgent: A Joint Predictive Agent Model in Egocentric Worlds
Knowledge-Guided Biomarker Identification for Label-Free Single-Cell RNA-Seq Data: A Reinforcement Learning Perspective
MERaLiON-SpeechEncoder: Towards a Speech Foundation Model for Singapore and Beyond
RED: Unleashing Token-Level Rewards from Holistic Feedback via Reward Redistribution
IDEATOR: Jailbreaking and Benchmarking Large Vision-Language Models Using Themselves
DeepVoting: Learning and Fine-Tuning Voting Rules with Canonical Embeddings
Rethinking Disentanglement under Dependent Factors of Variation
Discovering physical laws with parallel symbolic enumeration
Semantic Augmentation in Images using Language
Algorithmic Collusion by Large Language Models
A minimal coalition logic
Deep Reinforcement Learning for Inventory Networks: Toward Reliable Policy Optimization
Inconsistency Handling in Prioritized Databases with Universal Constraints: Complexity Analysis and Links with Active Integrity Constraints
Directly Aligning the Full Diffusion Trajectory with Fine-Grained Human Preference
CogGuide: Human-Like Guidance for Zero-Shot Omni-Modal Reasoning
TreeGPT: Pure TreeFFN Encoder-Decoder Architecture for Structured Reasoning Without Attention Mechanisms
Robix: A Unified Model for Robot Interaction, Reasoning and Planning
KROMA: Ontology Matching with Knowledge Retrieval and Large Language Models
Scaling LLM Planning: NL2FLOW for Parametric Problem Generation and Rigorous Evaluation
Optimizing Length Compression in Large Reasoning Models
LLMs for sensory-motor control: Combining in-context and iterative learning
Effort-aware Fairness: Incorporating a Philosophy-informed, Human-centered Notion of Effort into Algorithmic Fairness Metrics
Simulating Human-like Daily Activities with Desire-driven Autonomy
Enhancing Few-Shot Transfer Learning with Optimized Multi-Task Prompt Tuning through Modular Prompt Composition
ButterflyQuant: Ultra-low-bit LLM Quantization through Learnable Orthogonal Butterfly Transforms
CDE: Curiosity-Driven Exploration for Efficient Reinforcement Learning in Large Language Models
SimpleVLA-RL: Scaling VLA Training via Reinforcement Learning
Feasibility-Guided Fair Adaptive Offline Reinforcement Learning for Medicaid Care Management
Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations
Explaining Concept Drift through the Evolution of Group Counterfactuals
LoCoBench: A Benchmark for Long-Context Large Language Models in Complex Software Engineering
Mechanistic Learning with Guided Diffusion Models to Predict Spatio-Temporal Brain Tumor Growth
Graph Alignment via Dual-Pass Spectral Encoding and Latent Space Communication
ObjectReact: Learning Object-Relative Control for Visual Navigation
Fluent but Unfeeling: The Emotional Blind Spots of Language Models
Invisible Attributes, Visible Biases: Exploring Demographic Shortcuts in MRI-based Alzheimer's Disease Classification
An improved educational competition optimizer with multi-covariance learning operators for global optimization problems
Improving Video Diffusion Transformer Training by Multi-Feature Fusion and Alignment from Self-Supervised Vision Encoders
A modified RIME algorithm with covariance learning and diversity enhancement for numerical optimization
Towards Explainable Job Title Matching: Leveraging Semantic Textual Relatedness and Knowledge Graphs
Explainable AI for Accelerated Microstructure Imaging: A SHAP-Guided Protocol on the Connectome 2.0 scanner
Incorporating AI Incident Reporting into Telecommunications Law and Policy: Insights from India
OpenFake: An Open Dataset and Platform Toward Large-Scale Deepfake Detection
Prompt Pirates Need a Map: Stealing Seeds helps Stealing Prompts
Resource-Efficient Glioma Segmentation on Sub-Saharan MRI
ENSI: Efficient Non-Interactive Secure Inference for Large Language Models
We're Still Doing It (All) Wrong: Recommender Systems, Fifteen Years Later
LLMs Don't Know Their Own Decision Boundaries: The Unreliability of Self-Generated Counterfactual Explanations
MetaLLMix : An XAI Aided LLM-Meta-learning Based Approach for Hyper-parameters Optimization
Load more
Entropy-Gated Branching for Efficient Test-Time Reasoning
Created by
Haebom
作者
Xianzhi Li, Ethan Callanan, Abdellah Ghassel, Xiaodan Zhu
概要
本論文では、大規模言語モデル(LLM)の推論能力と問題解決精度を大幅に向上させるビームサーチなどのテスト時間計算方法の効率を高める新しい推論技術であるエントロピーゲート分岐(Entropy-Gated Branching)を提案します。従来のビームサーチは、モデルが既に高い確信を示す低多様性分岐を探索するのに多くの計算資源を浪費する一方、本論文では、不確実な推論ステップの小さなサブセットが最終予測精度に不均衡に大きな影響を及ぼすことを観察した。そこで、エントロピーをゲートメカニズムとして活用し、不確実性が高い点でのみ予測シーケンスを選択的に拡張することにより、計算リソースを動的に割り当てる方法を提示する。外部フィードバックモデルを使用して、候補分岐をランク付けし、剪定を実行します。数学と金融推論のベンチマークの実験の結果、この戦略は標準の推論よりも精度を22.6%向上させ、従来のビームサーチよりも37%速い速度で類似またはより高い性能を達成しました。これは、推論の間、動的リソース割り当てが効率と効果を大幅に向上できることを示しています。
Takeaways、Limitations
•
Takeaways:
◦
エントロピーベースの動的資源割り当てによりLLMの推論効率と精度を同時に改善できることを示した。
◦
不確実性の高い点に集中的に計算資源を割り当てる戦略の有効性を実験的に証明した。
◦
従来のビームサーチより高速で正確な推論を可能にする新しい方法を提示
◦
LLMの推論能力を向上させるためのより拡張可能な経路の提示
•
Limitations:
◦
提案された方法の性能は特定のベンチマーク(数学および金融推論)に限定され、他の種類の問題に対する一般化の可能性が不確実である。
◦
外部フィードバックモデルの性能に依存し、フィードバックモデルの設計と学習の詳細が不足している。
◦
エントロピーを不確実性尺度として使用することの限界および他の不確実性尺度を使用した場合の性能変化の分析が不足している。
PDFを見る
Made with Slashpage