/
/
Daily Arxiv
Daily Arxiv
世界中で発行される人工知能関連の論文をまとめるページです。
このページはGoogle Geminiを活用して要約し、非営利で運営しています。
論文の著作権は著者および関連機関にあり、共有する際は出典を明記してください。
Training-Free Text-Guided Color Editing with Multi-Modal Diffusion Transformer
SPARC: Soft Probabilistic Adaptive multi-interest Retrieval Model via Codebooks for recommender system
When Deepfakes Look Real: Detecting AI-Generated Faces with Unlabeled Data due to Annotation Challenges
TempOpt - Unsupervised Alarm Relation Learning for Telecommunication Networks
A Survey on Parallel Text Generation: From Parallel Decoding to Diffusion Language Models
Transferable Model-agnostic Vision-Language Model Adaptation for Efficient Weak-to-Strong Generalization
Yan: Foundational Interactive Video Generation
MLLM-CBench:A Comprehensive Benchmark for Continual Instruction Tuning of Multimodal LLMs with Chain-of-Thought Reasoning Analysis
VGGSounder: Audio-Visual Evaluations for Foundation Models
Capabilities of GPT-5 on Multimodal Medical Reasoning
C-MAG: Cascade Multimodal Attributed Graphs for Supply Chain Link Prediction
Beyond Ten Turns: Unlocking Long-Horizon Agentic Search with Large-Scale Asynchronous RL
MIND: A Noise-Adaptive Denoising Framework for Medical Images Integrating Multi-Scale Transformer
FlexCTC: GPU-powered CTC Beam Decoding With Advanced Contextual Abilities
Fairness of Automatic Speech Recognition: Looking Through a Philosophical Lens
Generalizing Scaling Laws for Dense and Sparse Large Language Models
Memp: Exploring Agent Procedural Memory
InfoCausalQA:Can Models Perform Non-explicit Causal Reasoning Based on Infographic?
Benchmarking Pretrained Molecular Embedding Models For Molecular Representation Learning
Request-Only Optimization for Recommendation Systems
Chemist Eye: A Visual Language Model-Powered System for Safety Monitoring and Robot Decision-Making in Self-Driving Laboratories
GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy
FairPOT: Balancing AUC Performance and Fairness with Proportional Optimal Transport
GTPO: Trajectory-Based Policy Optimization in Large Language Models
Block: Balancing Load in LLM Serving with Context, Knowledge and Predictive Scheduling
Estimating Worst-Case Frontier Risks of Open-Weight LLMs
LiteFat: Lightweight Spatio-Temporal Graph Learning for Real-Time Driver Fatigue Detection
DRWKV: Focusing on Object Edges for Low-Light Image Enhancement
A multi-strategy improved snake optimizer for 3-dimensional UAV path planning and engineering problems
Fragment size density estimator for shrinkage-induced fracture based on a physics-informed neural network
GLM-4.1V-Thinking and GLM-4.5V: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
WebArXiv: Evaluating Multimodal Agents on Time-Invariant arXiv Tasks
Audio-3DVG:Unified Audio - Point Cloud Fusion for 3D Visual Grounding
Beyond Autocomplete: Designing CopilotLens Towards Transparent and Explainable AI Coding Agents
OC-SOP: Enhancing Vision-Based 3D Semantic Occupancy Prediction by Object-Centric Awareness
SWA-SOP: Spatially-aware Window Attention for Semantic Occupancy Prediction in Autonomous Driving
The Importance of Being Lazy: Scaling Limits of Continual Learning
Human Motion Capture from Loose and Sparse Inertial Sensors with Garment-aware Diffusion Models
HVL: Semi-Supervised Segmentation leveraging Hierarchical Vision-Language Synergy with Dynamic Text-Spatial Query Alignment
Open-Set LiDAR Panoptic Segmentation Guided by Uncertainty-Aware Learning
Poison Once, Control Anywhere: Clean-Text Visual Backdoors in VLM-based Mobile Agents
MGDFIS: Multi-scale Global-detail Feature Integration Strategy for Small Object Detection
Deep Learning Model Acceleration and Optimization Strategies for Real-Time Recommendation Systems
ChineseHarm-Bench: A Chinese Harmful Content Detection Benchmark
Gradual Transition from Bellman Optimality Operator to Bellman Operator in Online Reinforcement Learning
Sarc7: Evaluating Sarcasm Detection and Generation with Seven Types and Emotion-Informed Techniques
Exploring Scaling Laws for EHR Foundation Models
MapStory: Prototyping Editable Map Animations with LLM Agents
Teaching Large Language Models to Maintain Contextual Faithfulness via Synthetic Tasks and Reinforcement Learning
Can Large Multimodal Models Understand Agricultural Scenes? Benchmarking with AgroMind
Halting Recurrent GNNs and the Graded $\mu$-Calculus
Deep Learning Warm Starts for Trajectory Optimization on the International Space Station
EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
FedRecon: Missing Modality Reconstruction in Heterogeneous Distributed Environments
AI-Slop to AI-Polish? Aligning Language Models through Edit-Based Writing Rewards and Test-time Computation
GraspClutter6D: A Large-scale Real-world Dataset for Robust Perception and Grasping in Cluttered Scenes
Mosaic: Composite Projection Pruning for Resource-efficient LLMs
CO-Bench: Benchmarking Language Model Agents in Algorithm Search for Combinatorial Optimization
FT-Transformer: Resilient and Reliable Transformer with End-to-End Fault Tolerant Attention
The Illusory Normativity of Rights-Based AI Regulation
Shifting Perspectives: Steering Vectors for Robust Bias Mitigation in LLMs
Simulating the Real World: A Unified Survey of Multimodal Generative Models
RIZE: Regularized Imitation Learning via Distributional Reinforcement Learning
One-shot Optimized Steering Vectors Mediate Safety-relevant Behaviors in LLMs
EvoP: Robust LLM Inference via Evolutionary Pruning
Conformal Prediction of Classifiers with Many Classes based on Noisy Labels
Benchmarking LLMs' Mathematical Reasoning with Unseen Random Variables Questions
GenAI Confessions: Black-box Membership Inference for Generative Image Models
Beyond Memorization: Assessing Semantic Generalization in Large Language Models Using Phrasal Constructions
Evaluation of Bio-Inspired Models under Different Learning Settings For Energy Efficiency in Network Traffic Prediction
SLTNet: Efficient Event-based Semantic Segmentation with Spike-driven Lightweight Transformer-based Networks
Leveraging Audio and Text Modalities in Mental Health: A Study of LLMs Performance
Learning Characteristics of Reverse Quaternion Neural Network
Depth-Guided Self-Supervised Human Keypoint Detection via Cross-Modal Distillation
Retrieval-Augmented Decision Transformer: External Memory for In-context RL
Downscaling Extreme Precipitation with Wasserstein Regularized Diffusion
Episodic Memory Verbalization using Hierarchical Representations of Life-Long Robot Experience
Return Prediction for Mean-Variance Portfolio Selection: How Decision-Focused Learning Shapes Forecasting Models
Pediatric brain tumor classification using digital histopathology and deep learning: evaluation of SOTA methods on a multi-center Swedish cohort
CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks
Explaining Caption-Image Interactions in CLIP Models with Second-Order Attributions
SpectralEarth: Training Hyperspectral Foundation Models at Scale
Towards flexible perception with visual memory
Integrating Clinical Knowledge Graphs and Gradient-Based Neural Systems for Enhanced Melanoma Diagnosis via the 7-Point Checklist
LUMA: A Benchmark Dataset for Learning from Uncertain and Multimodal Data
Towards Black-Box Membership Inference Attack for Diffusion Models
Robo-Instruct: Simulator-Augmented Instruction Alignment For Finetuning Code LLMs
From Model Performance to Claim: How a Change of Focus in Machine Learning Replicability Can Help Bridge the Responsibility Gap
Learning to Defer in Congested Systems: The AI-Human Interplay
LEAVES: Learning Views for Time-Series Biobehavioral Data in Contrastive Learning
Game-Theoretic Multiagent Reinforcement Learning
SMA:Who Said That? Auditing Membership Leakage in Semi-Black-box RAG Controlling
Aryabhata: An exam-focused language model for JEE Math
Rethinking Domain-Specific LLM Benchmark Construction: A Comprehensiveness-Compactness Approach
Large Language Models Do Not Simulate Human Psychology
LLM Robustness Leaderboard v1 --Technical report
One Subgoal at a Time: Zero-Shot Generalization to Arbitrary Linear Temporal Logic Requirements in Multi-Task Reinforcement Learning
Is Chain-of-Thought Reasoning of LLMs a Mirage? A Data Distribution Lens
StepFun-Prover Preview: Let's Think and Verify Step by Step
MoSE: Skill-by-Skill Mixture-of-Experts Learning for Embodied Autonomous Machines
Load more
Downscaling Extreme Precipitation with Wasserstein Regularized Diffusion
Created by
Haebom
作者
Yuhao Liu, James Doss-Gollin, Qiushi Dai, Ashok Veeraraghavan, Guha Balakrishnan
概要
この論文では、低解像度の降雨データ(Gaugeおよび再分析データ)を高解像度で強化する新しい方法であるWasserstein Regularized Diffusion(WassDiff)を紹介します。 WassDiffは、従来の深層生成モデルとは異なり、Wasserstein分布整合正規化器を使用して、極値強度での経験的偏向を低減します。レーダーやメソネットネットワークの高解像度データとは異なり、長期間および広範囲の地域をカバーする低解像度データを高解像度に変換し、極端な降雨現象分析に必要な高解像度、長期間の降雨データを提供します。実験の結果、WassDiffは、熱帯嵐や寒冷電線などの極端な気象現象を再現するために、従来の最先端の方法より優れた性能を示した。
Takeaways、Limitations
•
Takeaways:
◦
低解像度の降雨データを高解像度で強化することで、極端な降雨現象の分析と洪水リスク評価の精度向上に貢献することができます。
◦
既存の方法の限界を克服して極値強度での精度を高める。
◦
世界中で利用可能な低解像度の資料を活用し、長期間の高解像度降雨情報を得るための実用的な方法を提供。
◦
気候変動適応計画の確立に役立つ情報を提供します。
•
Limitations:
◦
WassDiffの性能は、入力として使用される低解像度データの品質に依存する可能性があります。
◦
特定の地域または気候条件の一般化性能評価がさらに必要です。
◦
モデルの計算コストと処理時間の分析が必要です。
PDFを見る
Made with Slashpage