/
/
Daily Arxiv
Daily Arxiv
世界中で発行される人工知能関連の論文をまとめるページです。
このページはGoogle Geminiを活用して要約し、非営利で運営しています。
論文の著作権は著者および関連機関にあり、共有する際は出典を明記してください。
Dense Video Understanding with Gated Residual Tokenization
Machines are more productive than humans until they aren't, and vice versa
BWCache: Accelerating Video Diffusion Transformers through Block-Wise Caching
Exploring Data and Parameter Efficient Strategies for Arabic Dialect Identifications
The threat of analytic flexibility in using large language models to simulate human data: A call to attention
Evaluating undergraduate mathematics examinations in the era of generative AI: a curriculum-level case study
A Graph-Based Approach to Alert Contextualisation in Security Operations Centres
FunAudio-ASR Technical Report
Omni-CLST: Error-aware Curriculum Learning with guided Selective chain-of-Thought for audio question answering
Do Code Semantics Help? A Comprehensive Study on Execution Trace-Based Information for Code Large Language Models
Pluralistic Alignment for Healthcare: A Role-Driven Framework
ALIGNS: Unlocking nomological networks in psychological measurement through a large language model
A Survey of Reinforcement Learning for Large Reasoning Models
Skeleton-based sign language recognition using a dual-stream spatio-temporal dynamic graph convolutional network
Reconstruction Alignment Improves Unified Multimodal Models
Moment- and Power-Spectrum-Based Gaussianity Regularization for Text-to-Image Models
FASL-Seg: Anatomy and Tool Segmentation of Surgical Scenes
Dual-Mode Deep Anomaly Detection for Medical Manufacturing: Structural Similarity and Feature Distance
Exploit Tool Invocation Prompt for Tool Behavior Hijacking in LLM-Based Agentic System
Measuring the Measures: Discriminative Capacity of Representational Similarity Metrics Across Model Families
AR-KAN: Autoregressive-Weight-Enhanced Kolmogorov-Arnold Network for Time Series Forecasting
Ensemble of Pathology Foundation Models for MIDOG 2025 Track 2: Atypical Mitosis Classification
Deep Learning-Driven Multimodal Detection and Movement Analysis of Objects in Culinary
Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning
MovieCORE: COgnitive REasoning in Movies
ASE: A Repository-Level Benchmark for Evaluating Security in AI-Generated Code
Generalized invariants meet constitutive neural networks: A novel framework for hyperelastic materials
Neural Logic Networks for Interpretable Classification
Roll Your Eyes: Gaze Redirection via Explicit 3D Eyeball Rotation
Controllable Surface Diffusion Generative Model for Neurodevelopmental Trajectories
Deciding how to respond: A deliberative framework to guide policymaker responses to AI systems
SCORPION: Addressing Scanner-Induced Variability in Histopathology
ThinkAct: Vision-Language-Action Reasoning via Reinforced Visual Latent Planning
SPICE: An Automated SWE-Bench Labeling Pipeline for Issue Clarity, Test Coverage, and Effort Estimation
FreeAudio: Training-Free Timing Planning for Controllable Long-Form Text-to-Audio Generation
EnCoBo: Energy-Guided Concept Bottlenecks for Interpretable Generation
T-SYNTH: A Knowledge-Based Dataset of Synthetic Breast Images
MedVAL: Toward Expert-Level Medical Text Validation with Language Models
Survivability of Backdoor Attacks on Unconstrained Face Recognition Systems
"What's Up, Doc?": Analyzing How Users Seek Health Information in Large-Scale Conversational AI Datasets
Engineering RAG Systems for Real-World Applications: Design, Development, and Evaluation
An Explainable AI Framework for Dynamic Resource Management in Vehicular Network Slicing
DiCoRe: Enhancing Zero-shot Event Detection via Divergent-Convergent LLM Reasoning
Semantic Exploration and Dense Mapping of Complex Environments using Ground Robot with Panoramic LiDAR-Camera Fusion
Evaluating Supervised Learning Models for Fraud Detection: A Comparative Study of Classical and Deep Architectures on Imbalanced Transaction Data
Binarized Neural Networks Converge Toward Algorithmic Simplicity: Empirical Support for the Learning-as-Compression Hypothesis
PMPO: Probabilistic Metric Prompt Optimization for Small and Large Language Models
DisastIR: A Comprehensive Information Retrieval Benchmark for Disaster Management
Preference Isolation Forest for Structure-based Anomaly Detection
Trustless Autonomy: Understanding Motivations, Benefits, and Governance Dilemmas in Self-Sovereign Decentralized AI Agents
GRADA: Graph-based Reranking against Adversarial Documents Attack
Modular Machine Learning: An Indispensable Path towards New-Generation Large Language Models
Direct Video-Based Spatiotemporal Deep Learning for Cattle Lameness Detection
Read Before You Think: Mitigating LLM Comprehension Failures with Step-by-Step Reading
Zero-Shot LLMs in Human-in-the-Loop RL: Replacing Human Feedback for Reward Shaping
Predicting Multi-Agent Specialization via Task Parallelizability
Fine-tuning Vision Language Models with Graph-based Knowledge for Explainable Medical Image Analysis
VLM-E2E: Enhancing End-to-End Autonomous Driving with Multimodal Driver Attention Fusion
METAL: A Multi-Agent Framework for Chart Generation with Test-Time Scaling
SNaRe: Domain-aware Data Generation for Low-Resource Event Detection
Superpose Task-specific Features for Model Merging
Examining False Positives under Inference Scaling for Mathematical Reasoning
SWAT: Sliding Window Adversarial Training for Gradual Domain Adaptation
Advanced Physics-Informed Neural Network with Residuals for Solving Complex Integral Equations
Retrieval-Retro: Retrieval-based Inorganic Retrosynthesis with Expert Knowledge
Unlocking Legal Knowledge: A Multilingual Dataset for Judicial Summarization in Switzerland
Reconstruction of Differentially Private Text Sanitization via Large Language Models
3DS: Medical Domain Adaptation of LLMs via Decomposed Difficulty-based Data Selection
The Role of Graph Topology in the Performance of Biomedical Knowledge Graph Completion Models
Top K Enhanced Reinforcement Learning Attacks on Heterogeneous Graph Node Classification
Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models
EXPLOR: Extrapolatory Pseudo-Label Matching for Out-of-distribution Uncertainty Based Rejection
Spatio-Temporal Anomaly Detection with Graph Networks for Data Quality Monitoring of the Hadron Calorimeter
Rule-Based Error Detection and Correction to Operationalize Movement Trajectory Classification
Heterogeneous Directed Hypergraph Neural Network over Abtract syntax tree (AST) for Code Classification
The Art of Saying "Maybe": A Conformal Lens for Uncertainty Benchmarking in VLMs
Human + AI for Accelerating Ad Localization Evaluation
Statistical Methods in Generative AI
InMind: Evaluating LLMs in Capturing and Applying Individual Human Reasoning Styles
DSperse: A Framework for Targeted Verification in Zero-Knowledge Machine Learning
DualSG: A Dual-Stream Explicit Semantic-Guided Multivariate Time Series Forecasting Framework
Judging with Many Minds: Do More Perspectives Mean Less Prejudice? On Bias Amplifications and Resistance in Multi-Agent Based LLM-as-Judge
Mastering Multi-Drone Volleyball through Hierarchical Co-Self-Play Reinforcement Learning
Automatic Mapping of AutomationML Files to Ontologies for Graph Queries and Validation
Explicit Context-Driven Neural Acoustic Modeling for High-Fidelity RIR Generation
FlowRL: Matching Reward Distributions for LLM Reasoning
Orion: Fuzzing Workflow Automation
TITAN: A Trajectory-Informed Technique for Adaptive Parameter Freezing in Large-Scale VQE
Fast and Fluent Diffusion Language Models via Convolutional Decoding and Rejective Fine-tuning
SMARTER: A Data-efficient Framework to Improve Toxicity Detection with Explanation via Self-augmenting Large Language Models
Watermarking and Anomaly Detection in Machine Learning Models for LORA RF Fingerprinting
Semi-Supervised 3D Medical Segmentation from 2D Natural Images Pretrained Model
Leveraging Geometric Visual Illusions as Perceptual Inductive Biases for Vision Models
Exploring How Audio Effects Alter Emotion with Foundation Models
WorldForge: Unlocking Emergent 3D/4D Generation in Video Diffusion Model via Training-Free Guidance
The mechanization of science illustrated by the Lean formalization of the multi-graded Proj construction
Vulnerable Agent Identification in Large-Scale Multi-Agent Reinforcement Learning
TextMine: LLM-Powered Knowledge Extraction for Humanitarian Mine Action
Listening, Imagining \& Refining: A Heuristic Optimized ASR Correction Framework with LLMs
Communication Efficient Split Learning of ViTs with Attention-based Double Compression
Load more
Reconstruction Alignment Improves Unified Multimodal Models
Created by
Haebom
作者
Ji Xie, Trevor Darrell, Luke Zettlemoyer, XuDong Wang
概要
本稿では、統合マルチモーダルモデル(UMM)の作成と理解を向上させるための効率的な後処理方法である再構成アライメント(RecA)を提案します。既存のUMM学習には、キャプションが視覚的な詳細を見逃す画像とテキストのペアに依存する制限があります。 RecAは、キャプションなしで視覚的理解エンコーダ埋め込みを密集した「テキストプロンプト」として活用し、UMMを自己視覚的理解埋め込みとして条件付けし、自己地図学習ベースの再構成損失を介して入力画像を再構成するように最適化することによって理解と生成を再調整します。 RecAは、さまざまなUMMアーキテクチャ(自己回帰、マスク自己回帰、拡散ベース)に適用でき、GenEval、DPGBench、ImgEdit、GEditなど、さまざまなベンチマークでパフォーマンスが向上しました。わずか27 GPU時間の後処理で大幅なパフォーマンス向上を達成し、大規模なオープンソースモデルを凌駕する効率的で一般的なUMM後処理整列戦略であることを示しています。
Takeaways、Limitations
•
Takeaways:
◦
UMMの生成と編集性能を効率的に改善する新しい後処理法RecA提示
◦
キャプションに頼らずに視覚的理解の埋め込みを活用して豊富な指導学習を提供します。
◦
さまざまなUMMアーキテクチャに適用可能な一般性。
◦
少ないGPU時間(27時間)で大幅な性能向上を達成(GenEval、DPGBench、ImgEdit、GEditベンチマークで性能向上を確認)。
◦
大規模なオープンソースモデルを凌駕する性能。
•
Limitations:
◦
RecAの性能向上は特定のベンチマークに対する結果であり、他のベンチマークやデータセットでの一般化性能はさらなる研究が必要である。
◦
RecAがすべてのUMMアーキテクチャに対して同じレベルのパフォーマンス向上を提供するわけではありません。アーキテクチャによる性能差の分析が不足している。
◦
後処理方法なので、初期学習の質によって性能向上の程度が変わることがある。
PDFを見る
Made with Slashpage