/
/
Daily Arxiv
Daily Arxiv
世界中で発行される人工知能関連の論文をまとめるページです。
このページはGoogle Geminiを活用して要約し、非営利で運営しています。
論文の著作権は著者および関連機関にあり、共有する際は出典を明記してください。
PRIX: Learning to Plan from Raw Pixels for End-to-End Autonomous Driving
Swin-TUNA: A Novel PEFT Approach for Accurate Food Image Segmentation
EarthLink: A Self-Evolving AI Agent for Climate Science
Reality Proxy: Fluid Interactions with Real-World Objects in MR via Abstract Representations
Leveraging multi-source and heterogeneous signals for fatigue detection
Segmentation-free Goodness of Pronunciation
Adaptive Relative Pose Estimation Framework with Dual Noise Tuning for Safe Approaching Maneuvers
Compositional Coordination for Multi-Robot Teams with Large Language Models
Diffusion Beats Autoregressive in Data-Constrained Settings
The New LLM Bottleneck: A Systems Perspective on Latent Attention and Mixture-of-Experts
EndoControlMag: Robust Endoscopic Vascular Motion Magnification with Periodic Reference Resetting and Hierarchical Tissue-aware Dual-Mask Control
Long-Short Distance Graph Neural Networks and Improved Curriculum Learning for Emotion Recognition in Conversation
Omni-Thinker: Scaling Cross-Domain Generalization in LLMs via Multi-Task RL with Hybrid Rewards
GCC-Spam: Spam Detection via GAN, Contrastive Learning, and Character Similarity Networks
SDSC:A Structure-Aware Metric for Semantic Signal Representation Learning
Multilingual LLMs Are Not Multilingual Thinkers: Evidence from Hindi Analogy Evaluation
Frequency-Dynamic Attention Modulation for Dense Prediction
A Survey of Deep Learning for Geometry Problem Solving
EEG Foundation Models: A Critical Review of Current Progress and Future Directions
Inversion-DPO: Precise and Efficient Post-Training for Diffusion Models
A PBN-RL-XAI Framework for Discovering a "Hit-and-Run" Therapeutic Strategy in Melanoma
Task Priors: Enhancing Model Evaluation by Considering the Entire Space of Downstream Tasks
OrQstrator: An AI-Powered Framework for Advanced Quantum Circuit Optimization
A comprehensive study of LLM-based argument classification: from LLAMA through GPT-4o to Deepseek-R1
Mechanistic Indicators of Understanding in Large Language Models
Scaling RL to Long Videos
Fast Bilateral Teleoperation and Imitation Learning Using Sensorless Force Control via Accurate Dynamics Model
Masked Autoencoders that Feel the Heart: Unveiling Simplicity Bias for ECG Analyses
SyncMapV2: Robust and Adaptive Unsupervised Segmentation
LLM Web Dynamics: Tracing Model Collapse in a Network of LLMs
Why Do Class-Dependent Evaluation Effects Occur with Time Series Feature Attributions? A Synthetic Data Investigation
Diffuse and Disperse: Image Generation with Representation Regularization
LLM-D12: A Dual-Dimensional Scale of Instrumental and Relational Dependencies on Large Language Models
MambaNeXt-YOLO: A Hybrid State Space Model for Real-time Object Detection
PALADIN : Robust Neural Fingerprinting for Text-to-Image Diffusion Models
Outcome-Based Online Reinforcement Learning: Algorithms and Fundamental Limits
Machine Learning Solutions Integrated in an IoT Healthcare Platform for Heart Failure Risk Stratification
Beyond Low-rank Decomposition: A Shortcut Approach for Efficient On-Device Learning
Vision Transformers in Precision Agriculture: A Comprehensive Survey
PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding
Position: An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
LagKV: Lag-Relative Information of the KV Cache Tells Which Tokens Are Important
Trigger without Trace: Towards Stealthy Backdoor Attack on Text-to-Image Diffusion Models
Sparse Logit Sampling: Accelerating Knowledge Distillation in LLMs
Aligning Vision to Language: Annotation-Free Multimodal Knowledge Graph Construction for Enhanced LLMs Reasoning
Att-Adapter: A Robust and Precise Domain-Specific Multi-Attributes T2I Diffusion Adapter via Conditional Variational Autoencoder
When Large Vision-Language Model Meets Large Remote Sensing Imagery: Coarse-to-Fine Text-Guided Token Pruning
Robust Multi-View Learning via Representation Fusion of Sample-Level Attention and Alignment of Simulated Perturbation
Tackling Hallucination from Conditional Models for Medical Image Reconstruction with DynamicDPS
Quantum Machine Learning in Precision Medicine and Drug Discovery - A Game Changer for Tailored Treatments?
A general language model for peptide identification
ExpliCa: Evaluating Explicit Causal Reasoning in Large Language Models
EVEv2: Improved Baselines for Encoder-Free Vision-Language Models
LLM Alignment as Retriever Optimization: An Information Retrieval Perspective
Pulse-PPG: An Open-Source Field-Trained PPG Foundation Model for Wearable Applications Across Lab and Field Settings
Online Housing Market
Integrated Learning and Optimization for Congestion Management and Profit Maximization in Real-Time Electricity Market
Integrating Evidence into the Design of XAI and AI-based Decision Support Systems: A Means-End Framework for End-users in Construction
Scalable Parameter Design for Superconducting Quantum Circuits with Graph Neural Networks
A Survey of Event Causality Identification: Taxonomy, Challenges, Assessment, and Prospects
Neural Corrective Machine Unranking
Towards a Universal 3D Medical Multi-modality Generalization via Learning Personalized Invariant Representation
Differentiable Motion Manifold Primitives for Reactive Motion Generation under Kinodynamic Constraints
Zeroth-Order Fine-Tuning of LLMs in Random Subspaces
RUMI: Rummaging Using Mutual Information
Neural Machine Unranking
VolDoGer: LLM-assisted Datasets for Domain Generalization in Vision-Language Tasks
Unsupervised Concept Drift Detection from Deep Learning Representations in リアルタイム
A Multi-Faceted Evaluation Framework for Assessing Synthetic Data Generated by Large Language Models
DualXDA: Towards Sparse, Efficient and Explainable Data Attribution in Large AI Models
Quantifying the Uniqueness and Divisiveness of Presidential Discourse
DocTER: Evaluating Document-based Knowledge Editing
Learning Concepts Definable in First-Order Logic with Counting
Recognizing and Eliciting Weakly Single Crossing Profiles on Trees
Compliance Brain Assistant: Conversational Agentic AI for Assisting Compliance Tasks in Enterprise Environments
Learning Temporal Abstractions via Variational Homomorphisms in Option-Induced Abstract MDPs
When Autonomy Goes Rogue: Preparing for Risks of Multi-Agent Collusion in Social Systems
An Integrated Framework of Prompt Engineering and Multidimensional Knowledge Graphs for Legal Dispute Analysis
DisMS-TS: Eliminating Redundant Multi-Scale Features for Time Series Classification
Corrupted by Reasoning: Reasoning Language Models Become Free-Riders in Public Goods Games
Beamforming and Resource Allocation for Delay Minimization in RIS-Assisted OFDM Systems
Neurodivergent Influenceability as a Contingent Solution to the AI Alignment Problem
EducationQ: Evaluating LLMs' Teaching Capabilities Through Multi-Agent Dialogue Framework
SuperARC: An Agnostic Test for Narrow, General, and Super Intelligence Based On the Principles of Recursive Compression and Algorithmic Probability
IPCGRL: Language-Instructed Reinforcement Learning for Procedural Level Generation
OR-LLM-Agent: Automating Modeling and Solving of Operations Research Optimization Problems with Reasoning LLM
Chemical reasoning in LLMs unlocks strategy-aware synthesis planning and reaction mechanism elucidation
BEARCUBS: A benchmark for computer-using web agents
From Hypothesis to Publication: A Comprehensive Survey of AI-Driven Research Support Systems
HPS: Hard Preference Sampling for Human Preference Alignment
A Differentiated Reward Method for Reinforcement Learning based Multi-Vehicle Cooperative Decision-Making Algorithms
Retrieving Classes of Causal Orders with Inconsistent Knowledge Bases
On the Structure of Game Provenance and its Applications
I-CEE: Tailoring Explanations of Image Classification Models to User Expertise
SIDA: Synthetic Image Driven Zero-shot Domain Adaptation
3D Software Synthesis Guided by Constraint-Expressive Intermediate Representation
Moving Out: Physically-grounded Human-AI Collaboration
SynC: Synthetic Image Caption Dataset Refinement with One-to-many Mapping for Zero-shot Image Captioning
Approximate SMT Counting Beyond Discrete Domains
DRWKV: Focusing on Object Edges for Low-Light Image Enhancement
Load more
SpecCLIP: Aligning and Translating Spectroscopic Measurements for Stars
Created by
Haebom
作者
Xiaosheng Zhao, Yang Huang, Guirong Xue, Xiao Kong, Jifeng Liu, Xiaoyu Tang, Timothy C. Beers, Yuan-Sen Ting, A-Li Luo
概要
本論文は、大規模言語モデル(LLM)の成功に触発され、星のスペクトル分析にLLMベースの方法論を拡張した基礎モデルフレームワークであるSpecCLIPを提示します。星のスペクトルには、構造化言語と同様に、星に関する豊富な物理的および化学的情報が含まれています。 SpecCLIPは、LAMOST低解像度とGaia XPの2種類のスペクトルタイプで事前トレーニングを行い、CLIPフレームワークを適用して異なる機器から得られたスペクトルを接続する対照学習を行います。スペクトラム固有の情報を保存し、スペクトラムタイプ間の変換を可能にする補助デコーダを追加して、埋め込みと入力スペクトラム間の相互情報を最大化します。これにより、さまざまな機器にわたって固有の補正と柔軟なアプリケーションを可能にするクロススペクトルフレームワークを構築できます。中規模のラベル付きデータセットに微調整して、恒星パラメータの推定や化学的リッチ度の決定などの作業への適応性を向上させ、外部調査データに基づいてパラメータ推定の精度と精度を向上させます。類似度検索およびクロススペクトル予測機能は、異常検出にも利用できます。その結果、スペクトル認識デコーダで強化された対照学習基礎モデルが精密恒星分光法の発展に寄与することができることを示しています。
Takeaways、Limitations
•
Takeaways:
◦
LLMベースの方法論を恒星スペクトル分析にうまく適用し、新しい基礎モデルフレームワークであるSpecCLIPを提示します。
◦
さまざまな機器のスペクトルデータを統合し、クロスキャリブレーションが可能なクロススペクトラムフレームワークを構築します。
◦
恒星パラメータの推定や化学的リッチ度の決定など、さまざまなサブタスクのパフォーマンス向上。
◦
類似度検索とクロススペクトル予測機能による異常検出可能性の提示
◦
精密恒星分光学の発展に貢献できる新しい可能性の提示
•
Limitations:
◦
本稿では、特定の種類のスペクトルデータ(LAMOST低解像度およびGaia XP)のみを使用して事前トレーニングを行います。様々なタイプのスペクトルデータの一般化性能検証が必要
◦
使用されるデータセットの規模と品質によっては、パフォーマンスに大きな影響を与える可能性があります。より膨大なデータセットを活用したさらなる研究が必要。
◦
実際の観測データの適用と検証がさらに必要です。
◦
他の従来の恒星分光分析法との比較分析が不足している。
PDFを見る
Made with Slashpage