/
/
Daily Arxiv
Daily Arxiv
世界中で発行される人工知能関連の論文をまとめるページです。
このページはGoogle Geminiを活用して要約し、非営利で運営しています。
論文の著作権は著者および関連機関にあり、共有する際は出典を明記してください。
PRIX: Learning to Plan from Raw Pixels for End-to-End Autonomous Driving
Swin-TUNA: A Novel PEFT Approach for Accurate Food Image Segmentation
EarthLink: A Self-Evolving AI Agent for Climate Science
Reality Proxy: Fluid Interactions with Real-World Objects in MR via Abstract Representations
Leveraging multi-source and heterogeneous signals for fatigue detection
Segmentation-free Goodness of Pronunciation
Adaptive Relative Pose Estimation Framework with Dual Noise Tuning for Safe Approaching Maneuvers
Compositional Coordination for Multi-Robot Teams with Large Language Models
Diffusion Beats Autoregressive in Data-Constrained Settings
The New LLM Bottleneck: A Systems Perspective on Latent Attention and Mixture-of-Experts
EndoControlMag: Robust Endoscopic Vascular Motion Magnification with Periodic Reference Resetting and Hierarchical Tissue-aware Dual-Mask Control
Long-Short Distance Graph Neural Networks and Improved Curriculum Learning for Emotion Recognition in Conversation
Omni-Thinker: Scaling Cross-Domain Generalization in LLMs via Multi-Task RL with Hybrid Rewards
GCC-Spam: Spam Detection via GAN, Contrastive Learning, and Character Similarity Networks
SDSC:A Structure-Aware Metric for Semantic Signal Representation Learning
Multilingual LLMs Are Not Multilingual Thinkers: Evidence from Hindi Analogy Evaluation
Frequency-Dynamic Attention Modulation for Dense Prediction
A Survey of Deep Learning for Geometry Problem Solving
EEG Foundation Models: A Critical Review of Current Progress and Future Directions
Inversion-DPO: Precise and Efficient Post-Training for Diffusion Models
A PBN-RL-XAI Framework for Discovering a "Hit-and-Run" Therapeutic Strategy in Melanoma
Task Priors: Enhancing Model Evaluation by Considering the Entire Space of Downstream Tasks
OrQstrator: An AI-Powered Framework for Advanced Quantum Circuit Optimization
A comprehensive study of LLM-based argument classification: from LLAMA through GPT-4o to Deepseek-R1
Mechanistic Indicators of Understanding in Large Language Models
Scaling RL to Long Videos
Fast Bilateral Teleoperation and Imitation Learning Using Sensorless Force Control via Accurate Dynamics Model
Masked Autoencoders that Feel the Heart: Unveiling Simplicity Bias for ECG Analyses
SyncMapV2: Robust and Adaptive Unsupervised Segmentation
LLM Web Dynamics: Tracing Model Collapse in a Network of LLMs
Why Do Class-Dependent Evaluation Effects Occur with Time Series Feature Attributions? A Synthetic Data Investigation
Diffuse and Disperse: Image Generation with Representation Regularization
LLM-D12: A Dual-Dimensional Scale of Instrumental and Relational Dependencies on Large Language Models
MambaNeXt-YOLO: A Hybrid State Space Model for Real-time Object Detection
PALADIN : Robust Neural Fingerprinting for Text-to-Image Diffusion Models
Outcome-Based Online Reinforcement Learning: Algorithms and Fundamental Limits
Machine Learning Solutions Integrated in an IoT Healthcare Platform for Heart Failure Risk Stratification
Beyond Low-rank Decomposition: A Shortcut Approach for Efficient On-Device Learning
Vision Transformers in Precision Agriculture: A Comprehensive Survey
PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding
Position: An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research
LagKV: Lag-Relative Information of the KV Cache Tells Which Tokens Are Important
Trigger without Trace: Towards Stealthy Backdoor Attack on Text-to-Image Diffusion Models
Sparse Logit Sampling: Accelerating Knowledge Distillation in LLMs
Aligning Vision to Language: Annotation-Free Multimodal Knowledge Graph Construction for Enhanced LLMs Reasoning
Att-Adapter: A Robust and Precise Domain-Specific Multi-Attributes T2I Diffusion Adapter via Conditional Variational Autoencoder
When Large Vision-Language Model Meets Large Remote Sensing Imagery: Coarse-to-Fine Text-Guided Token Pruning
Robust Multi-View Learning via Representation Fusion of Sample-Level Attention and Alignment of Simulated Perturbation
Tackling Hallucination from Conditional Models for Medical Image Reconstruction with DynamicDPS
Quantum Machine Learning in Precision Medicine and Drug Discovery - A Game Changer for Tailored Treatments?
A general language model for peptide identification
ExpliCa: Evaluating Explicit Causal Reasoning in Large Language Models
EVEv2: Improved Baselines for Encoder-Free Vision-Language Models
LLM Alignment as Retriever Optimization: An Information Retrieval Perspective
Pulse-PPG: An Open-Source Field-Trained PPG Foundation Model for Wearable Applications Across Lab and Field Settings
Online Housing Market
Integrated Learning and Optimization for Congestion Management and Profit Maximization in Real-Time Electricity Market
Integrating Evidence into the Design of XAI and AI-based Decision Support Systems: A Means-End Framework for End-users in Construction
Scalable Parameter Design for Superconducting Quantum Circuits with Graph Neural Networks
A Survey of Event Causality Identification: Taxonomy, Challenges, Assessment, and Prospects
Neural Corrective Machine Unranking
Towards a Universal 3D Medical Multi-modality Generalization via Learning Personalized Invariant Representation
Differentiable Motion Manifold Primitives for Reactive Motion Generation under Kinodynamic Constraints
Zeroth-Order Fine-Tuning of LLMs in Random Subspaces
RUMI: Rummaging Using Mutual Information
Neural Machine Unranking
VolDoGer: LLM-assisted Datasets for Domain Generalization in Vision-Language Tasks
Unsupervised Concept Drift Detection from Deep Learning Representations in リアルタイム
A Multi-Faceted Evaluation Framework for Assessing Synthetic Data Generated by Large Language Models
DualXDA: Towards Sparse, Efficient and Explainable Data Attribution in Large AI Models
Quantifying the Uniqueness and Divisiveness of Presidential Discourse
DocTER: Evaluating Document-based Knowledge Editing
Learning Concepts Definable in First-Order Logic with Counting
Recognizing and Eliciting Weakly Single Crossing Profiles on Trees
Compliance Brain Assistant: Conversational Agentic AI for Assisting Compliance Tasks in Enterprise Environments
Learning Temporal Abstractions via Variational Homomorphisms in Option-Induced Abstract MDPs
When Autonomy Goes Rogue: Preparing for Risks of Multi-Agent Collusion in Social Systems
An Integrated Framework of Prompt Engineering and Multidimensional Knowledge Graphs for Legal Dispute Analysis
DisMS-TS: Eliminating Redundant Multi-Scale Features for Time Series Classification
Corrupted by Reasoning: Reasoning Language Models Become Free-Riders in Public Goods Games
Beamforming and Resource Allocation for Delay Minimization in RIS-Assisted OFDM Systems
Neurodivergent Influenceability as a Contingent Solution to the AI Alignment Problem
EducationQ: Evaluating LLMs' Teaching Capabilities Through Multi-Agent Dialogue Framework
SuperARC: An Agnostic Test for Narrow, General, and Super Intelligence Based On the Principles of Recursive Compression and Algorithmic Probability
IPCGRL: Language-Instructed Reinforcement Learning for Procedural Level Generation
OR-LLM-Agent: Automating Modeling and Solving of Operations Research Optimization Problems with Reasoning LLM
Chemical reasoning in LLMs unlocks strategy-aware synthesis planning and reaction mechanism elucidation
BEARCUBS: A benchmark for computer-using web agents
From Hypothesis to Publication: A Comprehensive Survey of AI-Driven Research Support Systems
HPS: Hard Preference Sampling for Human Preference Alignment
A Differentiated Reward Method for Reinforcement Learning based Multi-Vehicle Cooperative Decision-Making Algorithms
Retrieving Classes of Causal Orders with Inconsistent Knowledge Bases
On the Structure of Game Provenance and its Applications
I-CEE: Tailoring Explanations of Image Classification Models to User Expertise
SIDA: Synthetic Image Driven Zero-shot Domain Adaptation
3D Software Synthesis Guided by Constraint-Expressive Intermediate Representation
Moving Out: Physically-grounded Human-AI Collaboration
SynC: Synthetic Image Caption Dataset Refinement with One-to-many Mapping for Zero-shot Image Captioning
Approximate SMT Counting Beyond Discrete Domains
DRWKV: Focusing on Object Edges for Low-Light Image Enhancement
Load more
Machine Learning-Based Modeling of the Anode Heel Effect in X-ray Beam Monte Carlo Simulations
Created by
Haebom
作者
Hussein Harb, Didier Benoit, Axel Rannou, Chi-Hieu Pham, Valentin Tissot, Bahaa Nasr, Julien Bert
概要
本論文では、_Xラインイメージングシステムのモンテカルロシミュレーションにおけるカソード - アノード効果を正確にモデル化するための機械学習ベースのフレームワークを開発します。さまざまな管電圧で得られたビーム測定値から得られた実験的重みを使用して、陽極 - 陰極軸に沿った空間強度の変化を予測する多重回帰モデルを学習しました。この重みは、アノード - カソード効果によって引き起こされる非対称性を捉えます。モデル精度を維持しながら、必要な測定数を最小限に抑えるための体系的な微調整プロトコルを確立しました。 OpenGATE 10とGGEMSモンテカルロツールキットにモデルを実装し、統合性と予測性能を評価しました。テストされたモデルの中で、Gradient Boosting Regression(GBR)が最も高い精度を示し、すべてのエネルギーレベルで予測誤差が5%未満でした。最適化された微調整戦略は、エネルギーレベル当たり6つの検出器位置のみを必要とし、測定努力を65%削減しました。この微調整中に発生する最大誤差は2%未満でした。モンテカルロシミュレーション内の線量因子の比較は、GBRベースのモデルが臨床ビームプロファイルを正確に複製し、従来の対称ビームモデルよりも性能がはるかに優れていることを示した。この研究では、機械学習を使用してモンテカルロシミュレーションにアノード - カソード効果を組み込むための強力で一般化可能な方法を紹介します。限られた補正データを使用して正確でエネルギー依存的なビームモデリングを可能にすることで、臨床線量測定、画像品質評価、および放射線防護の分野でのアプリケーションのシミュレーションの現実性を向上させます。
Takeaways、Limitations
•
Takeaways:
◦
限られた測定データで正確なビームモデリングを可能にし、モンテカルロシミュレーションの現実性を高めます。
◦
GBRモデルを使用して臨床ビームプロファイルを正確に再現。
◦
従来の対称ビームモデルよりも改善された精度を提供します。
◦
臨床線量測定、映像品質評価、放射線防護など多様な応用分野に活用可能。
◦
効率的な微調整戦略により測定努力を大幅に削減
•
Limitations:
◦
この研究で使用されたモデルは、特定のXラインシステムに特化している可能性があり、他のシステムに対する一般化の可能性をさらに検証する必要があります。
◦
より多様なXラインシステムと条件の検証が必要です。
◦
モデルの精度は、使用される測定データの品質に依存します。
◦
GBRモデル以外の機械学習モデルとのパフォーマンス比較分析がさらに必要になる場合があります。
PDFを見る
Made with Slashpage