/
/
Daily Arxiv
Daily Arxiv
世界中で発行される人工知能関連の論文をまとめるページです。
このページはGoogle Geminiを活用して要約し、非営利で運営しています。
論文の著作権は著者および関連機関にあり、共有する際は出典を明記してください。
Watermarking and Anomaly Detection in Machine Learning Models for LORA RF Fingerprinting
Vulnerable Agent Identification in Large-Scale Multi-Agent Reinforcement Learning
Sea-ing Through Scattered Rays: Revisiting the Image Formation Model for Realistic Underwater Image Generation
DPANet: Dual Pyramid Attention Network for Multivariate Time Series Forecasting
MeanFlowSE: one-step generative speech enhancement via conditional mean flow
Empathy-R1: A Chain-of-Empathy and Reinforcement Learning Framework for Long-Form Mental Health Support
Threat Modeling for Enhancing Security of IoT Audio Classification Devices under a Secure Protocols Framework
AToken: A Unified Tokenizer for Vision
TGPO: Tree-Guided Preference Optimization for Robust Web Agent Reinforcement Learning
Comprehensive Evaluation of CNN-Based Audio Tagging Models on Resource-Constrained Devices
MapAnything: Universal Feed-Forward Metric 3D Reconstruction
Improving Anomalous Sound Detection with Attribute-aware Representation from Domain-adaptive Pre-training
Hardness, Structural Knowledge, and Opportunity: An Analytical Framework for Modular Performance Modeling
Benchmark of stylistic variation in LLM-generated texts
SWE-Effi: Re-Evaluating Software AI Agent System Effectiveness Under Resource Constraints
Structure Matters: Brain Graph Augmentation via Learnable Edge Masking for Data-efficient Psychiatric Diagnosis
DischargeSim: A Simulation Benchmark for Educational Doctor-Patient Communication at Discharge
Riemannian Batch Normalization: A Gyro Approach
On the Security of Tool-Invocation Prompts for LLM-Based Agentic Systems: An Empirical Risk Assessment
MIDOG 2025: Mitotic Figure Detection with Attention-Guided False Positive Correction
Do Retrieval Augmented Language Models Know When They Don't Know?
LongCat-Flash Technical Report
MedCOD: Enhancing English-to-Spanish Medical Translation of Large Language Models Using Enriched Chain-of-Dictionary Framework
Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning
PVPO: Pre-Estimated Value-Based Policy Optimization for Agentic Reasoning
CORE-RAG: Lossless Compression for Retrieval-Augmented LLMs via Reinforcement Learning
OpenWHO: A Document-Level Parallel Corpus for Health Translation in Low-Resource Languages
Subjective Behaviors and Preferences in LLM: Language of Browsing
Using Natural Language for Human-Robot Collaboration in the Real World
RegionMed-CLIP: A Region-Aware Multimodal Contrastive Learning Pre-trained Model for Medical Image Understanding
Causal2Vec: Improving Decoder-only LLMs as Versatile Embedding Models
VLA-Mark: A cross modal watermark for large vision-language alignment model
Deformable Dynamic Convolution for Accurate yet Efficient Spatio-Temporal Traffic Prediction
Deep Reinforcement Learning with Gradient Eligibility Traces
Generating Moving 3D Soundscapes with Latent Diffusion Models
Capturing Polysemanticity with PRISM: A Multi-Concept Feature Description Framework
Discrete Diffusion in Large Language and Multimodal Models: A Survey
DualEdit: Dual Editing for Knowledge Updating in Vision-Language Models
Algorithmic Fairness: Not a Purely Technical but Socio-Technical Property
OptiScene: LLM-driven Indoor Scene Layout Generation via Scaled Human-aligned Data Synthesis and Multi-Stage Preference Optimization
Perception-R1: Advancing Multimodal Reasoning Capabilities of MLLMs via Visual Perception Reward
AS-ASR: A Lightweight Framework for Aphasia-Specific Automatic Speech Recognition
LLMs Can Compensate for Deficiencies in Visual Representations
Spatial Understanding from Videos: Structured Prompts Meet Simulation Data
Emergent Abilities of Large Language Models under Continued Pretraining for Language Adaptation
Cross-Attention Speculative Decoding
Beyond Linear Steering: Unified Multi-Attribute Control for Language Models
Noise-Robustness Through Noise: Asymmetric LoRA Adaption with Poisoning Expert
SEMMA: A Semantic Aware Knowledge Graph Foundation Model
AmpleHate: Amplifying the Attention for Versatile Implicit Hate Detection
Fairness-in-the-Workflow: How Machine Learning Practitioners at Big Tech Companies Approach Fairness in Recommender Systems
GRE Suite: Geo-localization Inference via Fine-Tuned Vision-Language Models and Enhanced Reasoning Chains
A Survey of Large Language Models for Data Challenges in Graphs
CLEAR: A Clinically-Grounded Tabular Framework for Radiology Report Evaluation
Creative Preference Optimization
MUG-Eval: A Proxy Evaluation Framework for Multilingual Generation Capabilities in Any Language
Search and Refine During Think: Facilitating Knowledge Refinement for Improved Retrieval-Augmented Reasoning
Space Group Equivariant Crystal Diffusion
Schreier-Coset Graph Propagation
Examining Deployment and Refinement of the VIOLA-AI Intracranial Hemorrhage Model Using an Interactive NeoMedSys Platform
StreamBridge: Turning Your Offline Video Large Language Model into a Proactive Streaming Assistant
ConCISE: Confidence-guided Compression in Step-by-step Efficient Reasoning
AttentionDrop: A Novel Regularization Method for Transformer Models
MigGPT: Harnessing Large Language Models for Automated Migration of Out-of-Tree Linux Kernel Patches Across Versions
Hybrid Temporal Differential Consistency Autoencoder for Efficient and Sustainable Anomaly Detection in Cyber-Physical Systems
Who is Responsible When AI Fails? Mapping Causes, Entities, and Consequences of AI Privacy and Ethical Incidents
No Black Box Anymore: Demystifying Clinical Predictive Modeling with Temporal-Feature Cross Attention Mechanism
Negotiative Alignment: Embracing Disagreement to Achieve Fairer Outcomes - Insights from Urban Studies
MT-RewardTree: A Comprehensive Framework for Advancing LLM-Based Machine Translation via Reward Modeling
Pruning the Paradox: How CLIP's Most Informative Heads Enhance Performance While Amplifying Bias
KatFishNet: Detecting LLM-Generated Korean Text through Linguistic Feature Analysis
SuPreME: A Supervised Pre-training Framework for Multimodal ECG Representation Learning
Sparsity May Be All You Need: Sparse Random Parameter Adaptation
Neural Networks for Learnable and Scalable Influence Estimation of Instruction Fine-Tuning Data
"It Felt Like I Was Left in the Dark": Exploring Information Needs and Design Opportunities for Family Caregivers of Older Adult Patients in Critical Care Settings
Gradient Alignment in Physics-informed Neural Networks: A Second-Order Optimization Perspective
Advances in Multimodal Adaptation and Generalization: From Traditional Approaches to Foundation Models
A Layered Multi-Expert Framework for Long-Context Mental Health Assessments
Efficient Real-time Refinement of Language Model Text Generation
FLOAT: Generative Motion Latent Flow Matching for Audio-driven Talking Portrait
Dynamic Neural Curiosity Enhances Learning Flexibility for Autonomous Goal Discovery
Bayesian Concept Bottleneck Models with LLM Priors
G2D2: Gradient-Guided Discrete Diffusion for Inverse Problem Solving
SeCodePLT: A Unified Platform for Evaluating the Security of Code GenAI
DiRW: Path-Aware Digraph Learning for Heterophily
Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework
DynamicNER: A Dynamic, Multilingual, and Fine-Grained Dataset for LLM-based Named Entity Recognition
CrackSCF: Lightweight Cascaded Fusion Network for Robust and Efficient Structural Crack Segmentation
ConfReady: A RAG based Assistant and Dataset for Conference Checklist Responses
FOVAL: Calibration-Free and Subject-Invariant Fixation Depth Estimation Across Diverse Eye-Tracking Datasets
Assessing invariance to affine transformations in image quality metrics
The Great AI Witch Hunt: Reviewers Perception and (Mis)Conception of Generative AI in Research Writing
Database-Augmented Query Representation for Information Retrieval
Two Is Better Than One: Aligned Representation Pairs for Anomaly Detection
BBScoreV2: Learning Time-Evolution and Latent Alignment from Stochastic Representation
Beyond Pixels: Enhancing LIME with Hierarchical Features and Segmentation Foundation Models
Spatio-Temporal Anomaly Detection with Graph Networks for Data Quality Monitoring of the Hadron Calorimeter
Understanding AI Evaluation Patterns: How Different GPT Models Assess Vision-Language Descriptions
Online Robust Planning under Model Uncertainty: A Sample-Based Approach
HiPhO: How Far Are (M)LLMs from Humans in the Latest High School Physics Olympiad Benchmark?
Load more
Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning
Created by
Haebom
作者
Zinan Tang, Xin Gao, Qizhi Pei, Zhuoshi Pan, Mengzhang Cai, Jiang Wu, Conghui He, Lijun Wu
概要
本稿では、大規模言語モデル(LLM)の地図微調整(SFT)のための新しいフレームワークであるMiddoを提案します。 Middoは、既存の静的データセット管理スキームの限界を克服するために、モデルのパフォーマンスの変化に応じて自ら進化する動的データ最適化システムを構築しています。 3つの軸(損失パターン、埋め込みクラスターダイナミクス、自己整合スコア)に基づいてモデルのパフォーマンスを診断し、不適切なサンプルを識別して意味論的な整合性を維持しながら、教育的に貴重なトレーニングデータに変換します。これらの動的学習原理により、モデルのパフォーマンスが向上するにつれて、データ最適化プロセスも継続的に進化します。いくつかのベンチマーク実験の結果、Middoは従来のデータセットサイズを維持しながら平均7.15%の精度向上を達成し、シードデータの品質を向上させ、LLMのパフォーマンスを向上させることを示しています。これは、データとモデルの動的人間-AI共振化による持続可能なLLMトレーニングのための新しいパラダイムを提示します。コードとデータセットは公開されています。
Takeaways、Limitations
•
Takeaways:
◦
モデルのパフォーマンスが向上するにつれて、データセットを動的に最適化する新しいフレームワークを提示します。
◦
従来のSFT方式のLimitationsである静的なデータセット管理の問題を解決。
◦
平均7.15%の精度向上という実験結果により性能改善効果を実証。
◦
データとモデルの共振化による持続可能なLLMトレーニングパラダイムの提示
◦
コードとデータセットの開示による研究の再現性と拡張性の確保
•
Limitations:
◦
現時点では実験結果のみが提示されており、フレームワークの詳細な実装とアルゴリズムの詳細な説明は不足しています。
◦
さまざまなLLMとデータセットの一般化の可能性に関する追加の検証が必要です。
◦
自己整合スコアの定義と測定方法の明確な説明の欠如。
◦
モデルのパフォーマンスの向上がデータセットの定性的な向上によるものか、他の要因によるものなのかを明確に分析する必要があります。
PDFを見る
Made with Slashpage