/
/
Daily Arxiv
Daily Arxiv
世界中で発行される人工知能関連の論文をまとめるページです。
このページはGoogle Geminiを活用して要約し、非営利で運営しています。
論文の著作権は著者および関連機関にあり、共有する際は出典を明記してください。
VarCoNet: A variability-aware self-supervised framework for functional connectome extraction from resting-state fMRI
KAIROS: Unified Training for Universal Non-Autoregressive Time Series Forecasting
SingMOS-Pro: An Comprehensive Benchmark for Singing Quality Assessment
Pack and Force Your Memory: Long-form and Consistent Video Generation
Understanding Adversarial Transfer: Why Representation-Space Attacks Fail Where Data-Space Attacks Succeed
GPT and Prejudice: A Sparse Approach to Understanding Learned Representations in Large Language Models
Analyzing Latent Concepts in Code Language Models
Less is More: Lean yet Powerful Vision-Language Model for Autonomous Driving
DM-Bench: Benchmarking LLMs for Personalized Decision Making in Diabetes Management
YOLO-Based Defect Detection for Metal Sheets
Jina-reranker-v3: Last but Not Late Interaction for Listwise Document Reranking
SecInfer: Preventing Prompt Injection via Inference-time Scaling
Putnam-like dataset summary: LLMs as mathematical competition contestants
Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
Enhancing LLM Steering through Sparse Autoencoder-Based Vector Refinement
Observation-Free Attacks on Online Learning to Rank
MTRec: Learning to Align with User Preferences via Mental Reward Models
MobiLLM: An Agentic AI Framework for Closed-Loop Threat Mitigation in 6G Open RANs
When Long Helps Short: How Context Length in Supervised Fine-tuning Affects Behavior of Large Language Models
Flow-Induced Diagonal Gaussian Processes
Towards Size-invariant Salient Object Detection: A Generic Evaluation and Optimization Approach
Dual-Stage Reweighted MoE for Long-Tailed Egocentric Mistake Detection
Robust Pan-Cancer Mitotic Figure Detection with YOLOv12
Scam2Prompt: A Scalable Framework for Auditing Malicious Scam Endpoints in Production LLMs
Better by Comparison: Retrieval-Augmented Contrastive Reasoning for Automatic Prompt Optimization
STORI: A Benchmark and Taxonomy for Stochastic Environments
A Study on the Framework for Evaluating the Ethics and Trustworthiness of Generative AI
Grounding the Ungrounded: A Spectral-Graph Framework for Quantifying Hallucinations in multimodal LLMs
FinAgentBench: A Benchmark Dataset for Agentic Retrieval in Financial Question Answering
RelayFormer: A Unified Local-Global Attention Framework for Scalable Image and Video Manipulation Localization
Quantum-RAG and PunGPT2: Advancing Low-Resource Language Generation and Retrieval for the Punjabi Language
Tuning LLM-based Code Optimization via Meta-Prompting: An Industrial Perspective
SBP-YOLO:A Lightweight Real-Time Model for Detecting Speed Bumps and Potholes toward Intelligent Vehicle Suspension Systems
An Architecture for Spatial Networking
A Comprehensive Review on Harnessing Large Language Models to Overcome Recommender System Challenges
First Hallucination Tokens Are Different from Conditional Ones
Rubrics as Rewards: Reinforcement Learning Beyond Verifiable Domains
Model Parallelism With Subnetwork Data Parallelism
VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting
A Survey of Pun Generation: Datasets, Evaluations and Methodologies
Controlled Generation with Equivariant Variational Flow Matching
CAST: Enhancing Code Retrieval-Augmented Generation with Structural Chunking via Abstract Syntax Tree
DiffusionBlocks: Block-wise Neural Network Training via Diffusion Interpretation
SP-VLA: A Joint Model Scheduling and Token Pruning Approach for VLA Model Acceleration
Semantic Preprocessing for LLM-based Malware Analysis
Manipulating 3D Molecules in a Fixed-Dimensional E(3)-Equivariant Latent Space
Permissioned LLMs: Enforcing Access Control in Large Language Models
Efficient Preimage Approximation for Neural Network Certification
JALMBench: Benchmarking Jailbreak Vulnerabilities in Audio Language Models
NeSyGeo: A Neuro-Symbolic Framework for Multimodal Geometric Reasoning Data Generation
Leveraging Online Data to Enhance Medical Knowledge in a Small Persian Language Model
Pre-training Limited Memory Language Models with Internal and External Knowledge
OT Score: An OT based Confidence Score for Source Free Unsupervised Domain Adaptation
Comparing Exploration-Exploitation Strategies of LLMs and Humans: Insights from Standard Multi-armed Bandit Experiments
A Survey of Deep Learning for Complex Speech Spectrograms
Continuous Thought Machines
CostFilter-AD: Enhancing Anomaly Detection through Matching Cost Filtering
XBreaking: Explainable Artificial Intelligence for Jailbreaking LLMs
AlignDiT: Multimodal Aligned Diffusion Transformer for Synchronized Speech Generation
PropRAG: Guiding Retrieval with Beam Search over Proposition Paths
Activated LoRA: Fine-tuned LLMs for Intrinsics
Not a nuisance but a useful heuristic: Outlier dimensions favor frequent tokens in language models
Verbosity Tradeoffs and the Impact of Scale on the Faithfulness of LLM Self-Explanations
Towards Quantifying Long-Range Interactions in Graph Machine Learning: a Large Graph Dataset and a Measurement
DatawiseAgent: A Notebook-Centric LLM Agent Framework for Adaptive and Robust Data Science Automation
A Multi-Fidelity Control Variate Approach for Policy Gradient Estimation
L1: Controlling How Long A Reasoning Model Thinks With Reinforcement Learning
Rethinking the Vulnerability of Concept Erasure and a New Method
Towards Economical Inference: Enabling DeepSeek's Multi-Head Latent Attention in Any Transformer-based LLMs
Primus: A Pioneering Collection of Open-Source Datasets for Cybersecurity LLM トレーニング
MarketSenseAI 2.0: Enhancing Stock Analysis through LLM Agents
CBVLM: Training-free Explainable Concept-based Large Vision Language Models for Medical Image Classification
Graph Neural Networks for Transmission Grid Topology Control: Busbar Information Asymmetry and Heterogeneous Representations
Inferring Pluggable Types with Machine Learning
Optimizing Container Loading and Unloading through Dual-Cycling and Dockyard Rehandle Reduction Using a Hybrid Genetic Algorithm
LLAMAFUZZ: Large Language Model Enhanced Greybox Fuzzing
Mutual Information Guided Backdoor Mitigation for Pre-trained Encoders
RACCooN: A Versatile Instructional Video Editing Framework with Auto-Generated Narratives
Unified Domain Adaptive Semantic Segmentation
Do AI Models Perform Human-like Abstract Reasoning Across Modalities?
Learning to Decide with Just Enough: Information-Theoretic Context Summarization for CMDPs
Thinkquel: A Model Dedicated to Text-to-dbt Using Synthetic Data and a Span-Aware Objective
OffTopicEval: When Large Language Models Enter the Wrong Chat, Almost Always!
Learning to Interact in World Latent for Team Coordination
Understanding Generative Recommendation with Semantic IDs from a Model-scaling View
GUI-PRA: Process Reward Agent for GUI Tasks
PRIME: Planning and Retrieval-Integrated Memory for Enhanced Reasoning
Efficient & Correct Predictive Equivalence for Decision Trees
THOR: Tool-Integrated Hierarchical Optimization via RL for Mathematical Reasoning
Gala: Global LLM Agents for Text-to-Model Translation
Disentangling Multiplex Spatial-Temporal Transition Graph Representation Learning for Socially Enhanced POI Recommendation
LayerCake: Token-Aware Contrastive Decoding within Large Language Model Layers
Bridging Ethical Principles and Algorithmic Methods: An Alternative Approach for Assessing Trustworthiness in AI Systems
V2X-UniPool: Unifying Multimodal Perception and Knowledge Reasoning for Autonomous Driving
MIRROR: Modular Internal Processing for Personalized Safety in LLM Dialogue
SelfBudgeter: Adaptive Token Allocation for Efficient LLM Reasoning
Grounding Multimodal LLMs to Embodied Agents that Ask for Help with Reinforcement Learning
ViLBias: Detecting and Reasoning about Bias in Multimodal Content
OML: A Primitive for Reconciling Open Access with Owner Control in AI Model Distribution
Improved Monte Carlo Planning via Causal Disentanglement for Structurally-Decomposed Markov Decision Processes
Load more
SelfBudgeter: Adaptive Token Allocation for Efficient LLM Reasoning
Created by
Haebom
作者
Zheng Li, Qingxiu Dong, Jingyuan Ma, Di Zhang, Kai Jia, Zhifang Sui
概要
本論文は、複雑な問題に対して優れた性能を示す推論モデルが単純な問題に過度に思考する傾向があるという問題を解決するために、ユーザーフレンドリーな適応制御可能な推論フレームワークであるSelfBudgeterを提案する。 SelfBudgeterは推論前に予算推定メカニズムを統合し、デュアルトレーニング方式を使用します。まず、モデルは標準化された形式でトークン予算を予測する方法を学習し、強化学習フェーズを通じて問題の難易度に応じて自律的に予算を計画し、それを厳密に遵守するように訓練されます。 SelfBudgeterは初期段階で予算見積もりを出力するので、ユーザーは待ち時間を予測でき、手動で事前に入力された予算フィールドを介して推論長を制御できます。実験の結果、SelfBudgeterは問題の複雑さに応じて予算を動的に割り当て、GSM8K、MATH500、AIME2025データセットで1.5Bモデルの平均応答長圧縮率61%、7Bモデルの48%を達成しながら精度はほぼ維持した。
Takeaways、Limitations
•
Takeaways:
◦
ユーザーエクスペリエンスの向上:レイテンシ予測による生成プロセスの中断または継続に関する柔軟な意思決定が可能。
◦
リソース効率の向上:問題の難易度に応じた動的予算割り当てによる応答長の圧縮。
◦
制御可能性:予備充填された予算フィールドによる推論長さの手動制御。
◦
モデル性能を維持する:応答長圧縮にもかかわらず高精度を維持します。
•
Limitations:
◦
具体的なモデルアーキテクチャ、データセット、トレーニング方法などの詳細については、論文の原文を参照する必要があります。
◦
様々な問題タイプとモデルサイズに対する一般化性能に関するさらなる研究が必要
◦
ユーザー制御機能の実際のユーザビリティと効果の追加評価が必要です。
PDFを見る
Made with Slashpage