/
/
Daily Arxiv
Daily Arxiv
世界中で発行される人工知能関連の論文をまとめるページです。
このページはGoogle Geminiを活用して要約し、非営利で運営しています。
論文の著作権は著者および関連機関にあり、共有する際は出典を明記してください。
HPC Digital Twins for Evaluating Scheduling Policies, Incentive Structures and their Impact on Power and Cooling
NLKI: A lightweight Natural Language Knowledge Integration Framework for Improving Small VLMs in Commons VQA Tasks
Interact-Custom: Customized Human Object Interaction Image Generation
A Self-Supervised Mixture-of-Experts Framework for Multi-behavior Recommendation
MIDAS: Multimodal Interactive Digital-humAn Synthesis via Real-time Autoregressive Video Generation
From Tabula Rasa to Emergent Abilities: Discovering Robot Skills via Real-World Unsupervised Quality-Diversity
Dynamic Triangulation-Based Graph Rewiring for Graph Neural Networks
STDiff: A State Transition Diffusion Framework for Time Series Imputation in Industrial Systems
LLMs Can't Handle Peer Pressure: Crumbling under Multi-Agent Social Interactions
Graph-R1: Incentivizing the Zero-Shot Graph Learning Capability in LLMs via Explicit Reasoning
Modality-Specific Speech Enhancement and Noise-Adaptive Fusion for Acoustic and Body-Conduction Microphone Framework
Humans Perceive Wrong Narratives from AI Reasoning Texts
SpecVLM: Enhancing Speculative Decoding of Video LLMs via Verifier-Guided Token Pruning
Pareto Actor-Critic for Communication and Computation Co-Optimization in Non-Cooperative Federated Learning Services
Learning to Drive Ethically: Embedding Moral Reasoning into Autonomous Driving
Generative AI Against Poaching: Latent Composite Flow Matching for Wildlife Conservation
Privacy-Aware Detection of Fake Identity Documents: Methodology, Benchmark, and Improved Algorithms (FakeIDet2)
Beyond the Rosetta Stone: Unification Forces in Generalization Dynamics
Steering Towards Fairness: Mitigating Political Bias in LLMs
Dynamic Context Compression for Efficient RAG
Irredundant $k$-Fold Cross-Validation
Prompt Engineering and the Effectiveness of Large Language Models in Enhancing Human Productivity
A Highly Clean Recipe Dataset with Ingredient States Annotation for State Probing Task
Entropy-Memorization Law: Evaluating Memorization Difficulty of Data in LLMs
The Joys of Categorical Conformal Prediction
Adversarial Manipulation of Reasoning Models using Internal Representations
Agent-to-Agent Theory of Mind: Testing Interlocutor Awareness among Large Language Models
A Hybrid Artificial Intelligence Method for Estimating Flicker in Power Systems (Changes are marked)
GLProtein: Global-and-Local Structure Aware Protein Representation Learning
Program Semantic Inequivalence Game with Large Language Models
DSO: Aligning 3D Generators with Simulation Feedback for Physical Soundness
Improving Quantization with Post-Training Model Expansion
Safe and Efficient Social Navigation through Explainable Safety Regions Based on Topological Features
A Simple Approach to Constraint-Aware Imitation Learning with Application to Autonomous Racing
Federated nnU-Net for Privacy-Preserving Medical Image Segmentation
ExPath: Targeted Pathway Inference for Biological Knowledge Bases via Graph Learning and Explanation
Enhancing Automated Loop Invariant Generation for Complex Programs with Large Language Models
RevPRAG: Revealing Poisoning Attacks in Retrieval-Augmented Generation through LLM Activation Analysis
Categorical Data Clustering via Value Order Estimated Distance Metric Learning
Application of AI to formal methods - an analysis of current trends
Reconsidering the Performance of GAE in Link Prediction
See then Tell: Enhancing Key Information Extraction with Vision Grounding
Enhancing Natural Language Inference Performance with Knowledge Graph for COVID-19 Automated Fact-Checking in Indonesian Language
Puppet-Master: Scaling Interactive Video Generation as a Motion Prior for Part-Level Dynamics
FFHFlow: Diverse and Uncertainty-Aware Dexterous Grasp Generation via Flow Variational Inference
SoAy: A Solution-based LLM API-using Methodology for Academic Information Seeking
Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study
Rethinking Invariance Regularization in Adversarial Training to Improve Robustness-Accuracy Trade-off
Network Formation and Dynamics Among Multi-LLMs
NetGPT: Generative Pretrained Transformer for Network Traffic
OLKAVS: An Open Large-Scale Korean Audio-Visual Speech Dataset
Explainability of Text Processing and Retrieval Methods: A Survey
The Ramon Llull's Thinking Machine for Automated Ideation
RLMR: Reinforcement Learning with Mixed Rewards for Creative Writing
LLM-Based Agents for Competitive Landscape Mapping in Drug Asset Due Diligence
MSARL: Decoupling Reasoning and Tool Use with Multi-Small-Agent Reinforcement Learning
Automated Algorithmic Discovery for Gravitational-Wave Detection Guided by LLM-Informed Evolutionary Monte Carlo Tree Search
Can Large Language Models Develop Strategic Reasoning? Post-training Insights from Learning Chess
Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground
Possible Principles for Aligned Structure Learning Agents
OptiMUS-0.3: Using Large Language Models to Model and Solve Optimization Problems at Scale
Prompt-to-Product: Generative Assembly via Bimanual Manipulation
OnGoal: Tracking and Visualizing Conversational Goals in Multi-Turn Dialogue with Large Language Models
Mixture of Contexts for Long Video Generation
FakeParts: a New Family of AI-Generated DeepFakes
Enabling Equitable Access to Trustworthy Financial Reasoning
Veritas: Generalizable Deepfake Detection via Pattern-Aware Reasoning
Understanding, Protecting, and Augmenting Human Cognition with Generative AI: A Synthesis of the CHI 2025 Tools for Thought Workshop
Inference-Time Alignment Control for Diffusion Models with Reinforcement Learning Guidance
ChainReaction! Structured Approach with Causal Chains as Intermediate Representations for Improved and Explainable Causal Video Question Answering
Train-Once Plan-Anywhere Kinodynamic Motion Planning via Diffusion Trees
ExpertSim: Fast Particle Detector Simulation Using Mixture-of-Generative-Experts
WoW-Bench: Evaluating Fine-Grained Acoustic Perception in Audio-Language Models via Marine Mammal Vocalizations
ProactiveEval: A Unified Evaluation Framework for Proactive Dialogue Agents
Research Challenges in Relational Database Management Systems for LLM Queries
Quantum Verifiable Rewards for Post-Training Qiskit Code Assistant
AI Agentic Vulnerability Injection And Transformation with Optimized Reasoning
JADES: A Universal Framework for Jailbreak Assessment via Decompositional Scoring
Learning Primitive Embodied World Models: Towards Scalable Robotic Learning
Multi-Agent Penetration Testing AI for the Web
Uncertainty Aware-Predictive Control Barrier Functions: Safer Human Robot Interaction through Probabilistic Motion Forecasting
Exploring Machine Learning and Language Models for Multimodal Depression Detection
Speech Emotion Recognition via Entropy-Aware Score Selection
Surfel-based 3D Registration with Equivariant SE(3) Features
Evaluating Compositional Generalisation in VLMs and Diffusion Models
Safer Skin Lesion Classification with Global Class Activation Probability Map Evaluation and SafeML
Unleashing Uncertainty: Efficient Machine Unlearning for Generative AI
Signs of Struggle: Spotting Cognitive Distortions across Language and Register
Turning the Spell Around: Lightweight Alignment Amplification via Rank-One Safety Injection
Looking Beyond the Obvious: A Survey on Abstract Concept Recognition for Video Understanding
SKGE-SWIN: End-To-End Autonomous Vehicle Waypoint Prediction and Navigation Using Skip Stage Swin Transformer
Occlusion Robustness of CLIP for Military Vehicle Classification
SeqVLM: Proposal-Guided Multi-View Sequences Reasoning via VLM for Zero-Shot 3D Visual Grounding
Provable Benefits of In-Tool Learning for Large Language Models
${C}^{3}$-GS: Learning Context-aware, Cross-dimension, Cross-scale Feature for Generalizable Gaussian Splatting
Rethinking Testing for LLM Applications: Characteristics, Challenges, and a Lightweight Interaction Protocol
EEGDM: Learning EEG Representation with Latent Diffusion Model
Generative Annotation for ASR Named Entity Correction
MobileCLIP2: Improving Multi-Modal Reinforced Training
Task Allocation for Autonomous Machines using Computational Intelligence and Deep Reinforcement Learning
Load more
Inference-Time Alignment Control for Diffusion Models with Reinforcement Learning Guidance
Created by
Haebom
作者
Luozhijie Jin, Zijie Qiu, Jie Liu, Zijie Diao, Lifeng Qiao, Ning Ding, Alex Lamb, Xipeng Qiu
概要
本論文は、ノイズ除去ベースの生成モデル、特に拡散およびフローマッチングアルゴリズムの成果に基づいて、生成モデルの出力分布を人間の好み、構成精度、データ圧縮率などの複雑な下位目標に合わせる困難を解決しようとする。既存の強化学習(RL)微調整方法の限界を克服するために、拡散モデルのRL微調整を確率微分方程式と暗黙の補償条件化の観点から再解釈する。本論文は、基本モデルとRL微調整モデルの出力を幾何平均を介して組み合わせて分類器なし案内(CFG)を適用する推論時間方法である強化学習案内(RLG)を提示する。理論的分析は、RLGのガイダンス尺度が標準RL目標のKL正規化係数を調整することと数学的に等しく、さらなる訓練なしにソート品質のトレードオフの動的制御を可能にすることを示している。さまざまなアーキテクチャ、RLアルゴリズム、およびサブタスク(人間の好み、構成制御、圧縮率、テキストレンダリングなど)にわたって、RLGがRL微調整モデルのパフォーマンスを継続的に向上させることを広範な実験で実証しています。さらに、RLGは補間と外挿の両方をサポートし、生成整列制御において前例のない柔軟性を提供します。結論として、本論文は、推論における拡散モデルの整列を改善および制御するための実用的で理論的に妥当な解決策を提供する。
Takeaways、Limitations
•
Takeaways:
◦
拡散モデルのRL微調整のための新しい方法であるRLGの提示
◦
RLGは、推論時間に幾何平均を使用して基本モデルとRL微調整モデルの出力を組み合わせて、追加のトレーニングなしでアライメント強度を動的に制御可能にします。
◦
人間の好み、構成制御、圧縮率、テキストレンダリングなど、さまざまなサブタスクでRL微調整モデルのパフォーマンスを向上させます。
◦
補間と外挿をサポートすることによる生成整列制御の柔軟性の向上
◦
理論的分析によるRLGの効果を数学的に証明した。
◦
ソースコード公開。
•
Limitations:
◦
本論文で提示されているRLGの性能は、特定のデータセットとタスクの実験結果に基づいており、他のデータセットまたはタスクの一般化性能にはさらなる研究が必要です。
◦
RLGの計算コストは従来の方法より高くなる可能性があります。
◦
RLGのガイドスケール調整のための最適な戦略は、さらなる研究によってさらに改善することができます。
PDFを見る
Made with Slashpage