/
/
Daily Arxiv
Daily Arxiv
世界中で発行される人工知能関連の論文をまとめるページです。
このページはGoogle Geminiを活用して要約し、非営利で運営しています。
論文の著作権は著者および関連機関にあり、共有する際は出典を明記してください。
HPC Digital Twins for Evaluating Scheduling Policies, Incentive Structures and their Impact on Power and Cooling
NLKI: A lightweight Natural Language Knowledge Integration Framework for Improving Small VLMs in Commons VQA Tasks
Interact-Custom: Customized Human Object Interaction Image Generation
A Self-Supervised Mixture-of-Experts Framework for Multi-behavior Recommendation
MIDAS: Multimodal Interactive Digital-humAn Synthesis via Real-time Autoregressive Video Generation
From Tabula Rasa to Emergent Abilities: Discovering Robot Skills via Real-World Unsupervised Quality-Diversity
Dynamic Triangulation-Based Graph Rewiring for Graph Neural Networks
STDiff: A State Transition Diffusion Framework for Time Series Imputation in Industrial Systems
LLMs Can't Handle Peer Pressure: Crumbling under Multi-Agent Social Interactions
Graph-R1: Incentivizing the Zero-Shot Graph Learning Capability in LLMs via Explicit Reasoning
Modality-Specific Speech Enhancement and Noise-Adaptive Fusion for Acoustic and Body-Conduction Microphone Framework
Humans Perceive Wrong Narratives from AI Reasoning Texts
SpecVLM: Enhancing Speculative Decoding of Video LLMs via Verifier-Guided Token Pruning
Pareto Actor-Critic for Communication and Computation Co-Optimization in Non-Cooperative Federated Learning Services
Learning to Drive Ethically: Embedding Moral Reasoning into Autonomous Driving
Generative AI Against Poaching: Latent Composite Flow Matching for Wildlife Conservation
Privacy-Aware Detection of Fake Identity Documents: Methodology, Benchmark, and Improved Algorithms (FakeIDet2)
Beyond the Rosetta Stone: Unification Forces in Generalization Dynamics
Steering Towards Fairness: Mitigating Political Bias in LLMs
Dynamic Context Compression for Efficient RAG
Irredundant $k$-Fold Cross-Validation
Prompt Engineering and the Effectiveness of Large Language Models in Enhancing Human Productivity
A Highly Clean Recipe Dataset with Ingredient States Annotation for State Probing Task
Entropy-Memorization Law: Evaluating Memorization Difficulty of Data in LLMs
The Joys of Categorical Conformal Prediction
Adversarial Manipulation of Reasoning Models using Internal Representations
Agent-to-Agent Theory of Mind: Testing Interlocutor Awareness among Large Language Models
A Hybrid Artificial Intelligence Method for Estimating Flicker in Power Systems (Changes are marked)
GLProtein: Global-and-Local Structure Aware Protein Representation Learning
Program Semantic Inequivalence Game with Large Language Models
DSO: Aligning 3D Generators with Simulation Feedback for Physical Soundness
Improving Quantization with Post-Training Model Expansion
Safe and Efficient Social Navigation through Explainable Safety Regions Based on Topological Features
A Simple Approach to Constraint-Aware Imitation Learning with Application to Autonomous Racing
Federated nnU-Net for Privacy-Preserving Medical Image Segmentation
ExPath: Targeted Pathway Inference for Biological Knowledge Bases via Graph Learning and Explanation
Enhancing Automated Loop Invariant Generation for Complex Programs with Large Language Models
RevPRAG: Revealing Poisoning Attacks in Retrieval-Augmented Generation through LLM Activation Analysis
Categorical Data Clustering via Value Order Estimated Distance Metric Learning
Application of AI to formal methods - an analysis of current trends
Reconsidering the Performance of GAE in Link Prediction
See then Tell: Enhancing Key Information Extraction with Vision Grounding
Enhancing Natural Language Inference Performance with Knowledge Graph for COVID-19 Automated Fact-Checking in Indonesian Language
Puppet-Master: Scaling Interactive Video Generation as a Motion Prior for Part-Level Dynamics
FFHFlow: Diverse and Uncertainty-Aware Dexterous Grasp Generation via Flow Variational Inference
SoAy: A Solution-based LLM API-using Methodology for Academic Information Seeking
Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study
Rethinking Invariance Regularization in Adversarial Training to Improve Robustness-Accuracy Trade-off
Network Formation and Dynamics Among Multi-LLMs
NetGPT: Generative Pretrained Transformer for Network Traffic
OLKAVS: An Open Large-Scale Korean Audio-Visual Speech Dataset
Explainability of Text Processing and Retrieval Methods: A Survey
The Ramon Llull's Thinking Machine for Automated Ideation
RLMR: Reinforcement Learning with Mixed Rewards for Creative Writing
LLM-Based Agents for Competitive Landscape Mapping in Drug Asset Due Diligence
MSARL: Decoupling Reasoning and Tool Use with Multi-Small-Agent Reinforcement Learning
Automated Algorithmic Discovery for Gravitational-Wave Detection Guided by LLM-Informed Evolutionary Monte Carlo Tree Search
Can Large Language Models Develop Strategic Reasoning? Post-training Insights from Learning Chess
Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground
Possible Principles for Aligned Structure Learning Agents
OptiMUS-0.3: Using Large Language Models to Model and Solve Optimization Problems at Scale
Prompt-to-Product: Generative Assembly via Bimanual Manipulation
OnGoal: Tracking and Visualizing Conversational Goals in Multi-Turn Dialogue with Large Language Models
Mixture of Contexts for Long Video Generation
FakeParts: a New Family of AI-Generated DeepFakes
Enabling Equitable Access to Trustworthy Financial Reasoning
Veritas: Generalizable Deepfake Detection via Pattern-Aware Reasoning
Understanding, Protecting, and Augmenting Human Cognition with Generative AI: A Synthesis of the CHI 2025 Tools for Thought Workshop
Inference-Time Alignment Control for Diffusion Models with Reinforcement Learning Guidance
ChainReaction! Structured Approach with Causal Chains as Intermediate Representations for Improved and Explainable Causal Video Question Answering
Train-Once Plan-Anywhere Kinodynamic Motion Planning via Diffusion Trees
ExpertSim: Fast Particle Detector Simulation Using Mixture-of-Generative-Experts
WoW-Bench: Evaluating Fine-Grained Acoustic Perception in Audio-Language Models via Marine Mammal Vocalizations
ProactiveEval: A Unified Evaluation Framework for Proactive Dialogue Agents
Research Challenges in Relational Database Management Systems for LLM Queries
Quantum Verifiable Rewards for Post-Training Qiskit Code Assistant
AI Agentic Vulnerability Injection And Transformation with Optimized Reasoning
JADES: A Universal Framework for Jailbreak Assessment via Decompositional Scoring
Learning Primitive Embodied World Models: Towards Scalable Robotic Learning
Multi-Agent Penetration Testing AI for the Web
Uncertainty Aware-Predictive Control Barrier Functions: Safer Human Robot Interaction through Probabilistic Motion Forecasting
Exploring Machine Learning and Language Models for Multimodal Depression Detection
Speech Emotion Recognition via Entropy-Aware Score Selection
Surfel-based 3D Registration with Equivariant SE(3) Features
Evaluating Compositional Generalisation in VLMs and Diffusion Models
Safer Skin Lesion Classification with Global Class Activation Probability Map Evaluation and SafeML
Unleashing Uncertainty: Efficient Machine Unlearning for Generative AI
Signs of Struggle: Spotting Cognitive Distortions across Language and Register
Turning the Spell Around: Lightweight Alignment Amplification via Rank-One Safety Injection
Looking Beyond the Obvious: A Survey on Abstract Concept Recognition for Video Understanding
SKGE-SWIN: End-To-End Autonomous Vehicle Waypoint Prediction and Navigation Using Skip Stage Swin Transformer
Occlusion Robustness of CLIP for Military Vehicle Classification
SeqVLM: Proposal-Guided Multi-View Sequences Reasoning via VLM for Zero-Shot 3D Visual Grounding
Provable Benefits of In-Tool Learning for Large Language Models
${C}^{3}$-GS: Learning Context-aware, Cross-dimension, Cross-scale Feature for Generalizable Gaussian Splatting
Rethinking Testing for LLM Applications: Characteristics, Challenges, and a Lightweight Interaction Protocol
EEGDM: Learning EEG Representation with Latent Diffusion Model
Generative Annotation for ASR Named Entity Correction
MobileCLIP2: Improving Multi-Modal Reinforced Training
Task Allocation for Autonomous Machines using Computational Intelligence and Deep Reinforcement Learning
Load more
Learning Primitive Embodied World Models: Towards Scalable Robotic Learning
Created by
Haebom
作者
Qiao Sun, Liujia Yang, Wei Tang, Wei Huang, Kaixin Xu, Yongchao Chen, Mingyu Liu, Jiange Yang, Haoyi Zhu, Yating Wang, Tong He, Yilun Chen, Xili Dai, Nanyang Ye, Qinying Gu
概要
本論文は、大規模ボディインタラクションデータへの依存性という主なボトルネックを解決するために、限られた短時間の地平線に焦点を当てた新しい世界モデリングパラダイムであるPrimitive Embodied World Models(PEWM)を提案します。 PEWMは、固定された短時間の地平線でビデオ生成を制限することで、言語的概念とロボットの動きの視覚的表現との間のきめ細かい位置合わせを可能にし、学習の複雑さを減らし、ボディデータ収集のデータ効率を向上させ、推論遅延時間を短縮します。モジュラーVision-Language Model(VLM)プランナーとStart-Goal heatmap Guidance mechanism(SGG)を備えた柔軟な閉ループ制御を可能にし、複雑な作業に対する生のレベルポリシーの構成的な一般化をサポートします。ビデオモデルの時空間視覚的事前情報とVLMの意味的認識を活用して、細かい物理的相互作用と高水準推論との間のギャップを解消し、スケーラブルで解釈可能で汎用的なボディインテリジェンスへの道を開きます。
Takeaways、Limitations
•
Takeaways:
◦
大規模なデータ依存性問題を解決する新しい世界モデリングパラダイムを提示
◦
言語と行動間のきめ細かいアライメントの向上
◦
学習の複雑さと推論遅延時間の削減
◦
データ効率の良いボディデータ収集が可能
◦
複雑なタスクに対する構成的一般化のサポート
◦
拡張可能で解釈可能で汎用的なボディインテリジェンスのための可能性を提示
•
Limitations:
◦
限られた短時間の地平線による長期計画と予測の難しさ
◦
固定された生のアクションセットへの依存性による柔軟性の制限
◦
VLMとSGGの性能への依存性
◦
実際のロボットシステムへの適用性と一般化性能の追加検証が必要
PDFを見る
Made with Slashpage