/
/
Daily Arxiv
Daily Arxiv
世界中で発行される人工知能関連の論文をまとめるページです。
このページはGoogle Geminiを活用して要約し、非営利で運営しています。
論文の著作権は著者および関連機関にあり、共有する際は出典を明記してください。
HPC Digital Twins for Evaluating Scheduling Policies, Incentive Structures and their Impact on Power and Cooling
NLKI: A lightweight Natural Language Knowledge Integration Framework for Improving Small VLMs in Commons VQA Tasks
Interact-Custom: Customized Human Object Interaction Image Generation
A Self-Supervised Mixture-of-Experts Framework for Multi-behavior Recommendation
MIDAS: Multimodal Interactive Digital-humAn Synthesis via Real-time Autoregressive Video Generation
From Tabula Rasa to Emergent Abilities: Discovering Robot Skills via Real-World Unsupervised Quality-Diversity
Dynamic Triangulation-Based Graph Rewiring for Graph Neural Networks
STDiff: A State Transition Diffusion Framework for Time Series Imputation in Industrial Systems
LLMs Can't Handle Peer Pressure: Crumbling under Multi-Agent Social Interactions
Graph-R1: Incentivizing the Zero-Shot Graph Learning Capability in LLMs via Explicit Reasoning
Modality-Specific Speech Enhancement and Noise-Adaptive Fusion for Acoustic and Body-Conduction Microphone Framework
Humans Perceive Wrong Narratives from AI Reasoning Texts
SpecVLM: Enhancing Speculative Decoding of Video LLMs via Verifier-Guided Token Pruning
Pareto Actor-Critic for Communication and Computation Co-Optimization in Non-Cooperative Federated Learning Services
Learning to Drive Ethically: Embedding Moral Reasoning into Autonomous Driving
Generative AI Against Poaching: Latent Composite Flow Matching for Wildlife Conservation
Privacy-Aware Detection of Fake Identity Documents: Methodology, Benchmark, and Improved Algorithms (FakeIDet2)
Beyond the Rosetta Stone: Unification Forces in Generalization Dynamics
Steering Towards Fairness: Mitigating Political Bias in LLMs
Dynamic Context Compression for Efficient RAG
Irredundant $k$-Fold Cross-Validation
Prompt Engineering and the Effectiveness of Large Language Models in Enhancing Human Productivity
A Highly Clean Recipe Dataset with Ingredient States Annotation for State Probing Task
Entropy-Memorization Law: Evaluating Memorization Difficulty of Data in LLMs
The Joys of Categorical Conformal Prediction
Adversarial Manipulation of Reasoning Models using Internal Representations
Agent-to-Agent Theory of Mind: Testing Interlocutor Awareness among Large Language Models
A Hybrid Artificial Intelligence Method for Estimating Flicker in Power Systems (Changes are marked)
GLProtein: Global-and-Local Structure Aware Protein Representation Learning
Program Semantic Inequivalence Game with Large Language Models
DSO: Aligning 3D Generators with Simulation Feedback for Physical Soundness
Improving Quantization with Post-Training Model Expansion
Safe and Efficient Social Navigation through Explainable Safety Regions Based on Topological Features
A Simple Approach to Constraint-Aware Imitation Learning with Application to Autonomous Racing
Federated nnU-Net for Privacy-Preserving Medical Image Segmentation
ExPath: Targeted Pathway Inference for Biological Knowledge Bases via Graph Learning and Explanation
Enhancing Automated Loop Invariant Generation for Complex Programs with Large Language Models
RevPRAG: Revealing Poisoning Attacks in Retrieval-Augmented Generation through LLM Activation Analysis
Categorical Data Clustering via Value Order Estimated Distance Metric Learning
Application of AI to formal methods - an analysis of current trends
Reconsidering the Performance of GAE in Link Prediction
See then Tell: Enhancing Key Information Extraction with Vision Grounding
Enhancing Natural Language Inference Performance with Knowledge Graph for COVID-19 Automated Fact-Checking in Indonesian Language
Puppet-Master: Scaling Interactive Video Generation as a Motion Prior for Part-Level Dynamics
FFHFlow: Diverse and Uncertainty-Aware Dexterous Grasp Generation via Flow Variational Inference
SoAy: A Solution-based LLM API-using Methodology for Academic Information Seeking
Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study
Rethinking Invariance Regularization in Adversarial Training to Improve Robustness-Accuracy Trade-off
Network Formation and Dynamics Among Multi-LLMs
NetGPT: Generative Pretrained Transformer for Network Traffic
OLKAVS: An Open Large-Scale Korean Audio-Visual Speech Dataset
Explainability of Text Processing and Retrieval Methods: A Survey
The Ramon Llull's Thinking Machine for Automated Ideation
RLMR: Reinforcement Learning with Mixed Rewards for Creative Writing
LLM-Based Agents for Competitive Landscape Mapping in Drug Asset Due Diligence
MSARL: Decoupling Reasoning and Tool Use with Multi-Small-Agent Reinforcement Learning
Automated Algorithmic Discovery for Gravitational-Wave Detection Guided by LLM-Informed Evolutionary Monte Carlo Tree Search
Can Large Language Models Develop Strategic Reasoning? Post-training Insights from Learning Chess
Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground
Possible Principles for Aligned Structure Learning Agents
OptiMUS-0.3: Using Large Language Models to Model and Solve Optimization Problems at Scale
Prompt-to-Product: Generative Assembly via Bimanual Manipulation
OnGoal: Tracking and Visualizing Conversational Goals in Multi-Turn Dialogue with Large Language Models
Mixture of Contexts for Long Video Generation
FakeParts: a New Family of AI-Generated DeepFakes
Enabling Equitable Access to Trustworthy Financial Reasoning
Veritas: Generalizable Deepfake Detection via Pattern-Aware Reasoning
Understanding, Protecting, and Augmenting Human Cognition with Generative AI: A Synthesis of the CHI 2025 Tools for Thought Workshop
Inference-Time Alignment Control for Diffusion Models with Reinforcement Learning Guidance
ChainReaction! Structured Approach with Causal Chains as Intermediate Representations for Improved and Explainable Causal Video Question Answering
Train-Once Plan-Anywhere Kinodynamic Motion Planning via Diffusion Trees
ExpertSim: Fast Particle Detector Simulation Using Mixture-of-Generative-Experts
WoW-Bench: Evaluating Fine-Grained Acoustic Perception in Audio-Language Models via Marine Mammal Vocalizations
ProactiveEval: A Unified Evaluation Framework for Proactive Dialogue Agents
Research Challenges in Relational Database Management Systems for LLM Queries
Quantum Verifiable Rewards for Post-Training Qiskit Code Assistant
AI Agentic Vulnerability Injection And Transformation with Optimized Reasoning
JADES: A Universal Framework for Jailbreak Assessment via Decompositional Scoring
Learning Primitive Embodied World Models: Towards Scalable Robotic Learning
Multi-Agent Penetration Testing AI for the Web
Uncertainty Aware-Predictive Control Barrier Functions: Safer Human Robot Interaction through Probabilistic Motion Forecasting
Exploring Machine Learning and Language Models for Multimodal Depression Detection
Speech Emotion Recognition via Entropy-Aware Score Selection
Surfel-based 3D Registration with Equivariant SE(3) Features
Evaluating Compositional Generalisation in VLMs and Diffusion Models
Safer Skin Lesion Classification with Global Class Activation Probability Map Evaluation and SafeML
Unleashing Uncertainty: Efficient Machine Unlearning for Generative AI
Signs of Struggle: Spotting Cognitive Distortions across Language and Register
Turning the Spell Around: Lightweight Alignment Amplification via Rank-One Safety Injection
Looking Beyond the Obvious: A Survey on Abstract Concept Recognition for Video Understanding
SKGE-SWIN: End-To-End Autonomous Vehicle Waypoint Prediction and Navigation Using Skip Stage Swin Transformer
Occlusion Robustness of CLIP for Military Vehicle Classification
SeqVLM: Proposal-Guided Multi-View Sequences Reasoning via VLM for Zero-Shot 3D Visual Grounding
Provable Benefits of In-Tool Learning for Large Language Models
${C}^{3}$-GS: Learning Context-aware, Cross-dimension, Cross-scale Feature for Generalizable Gaussian Splatting
Rethinking Testing for LLM Applications: Characteristics, Challenges, and a Lightweight Interaction Protocol
EEGDM: Learning EEG Representation with Latent Diffusion Model
Generative Annotation for ASR Named Entity Correction
MobileCLIP2: Improving Multi-Modal Reinforced Training
Task Allocation for Autonomous Machines using Computational Intelligence and Deep Reinforcement Learning
Load more
MLLM-CBench:A Comprehensive Benchmark for Continual Instruction Tuning of Multimodal LLMs with Chain-of-Thought Reasoning Analysis
Created by
Haebom
作者
Haiyun Guo, ZhiYan Hou, Yu Chen, Jinghan He, Yandu Sun, Yuzhe Zhou, Shujing Guo, Kuan Zhu, Jinqiao Wang
概要
本稿では、マルチモーダル大規模言語モデル(MLLM)の継続的な指示調整(CIT)のための包括的な評価ベンチマークであるMLLM-CTBenchを紹介します。 MLLM-CTBenchは、最終回答精度と細分化された思考過程(CoT)推論品質評価を組み合わせた多次元評価、4つの主要カテゴリにわたって8つの連続学習アルゴリズムをベンチマークし、強化学習と指導学習微調整パラダイムを体系的に比較する包括的なアルゴリズムと訓練パラダイムの評価、そして選定および構成された注意深くキュレーションされた作業という3つの主要な貢献をします。主な研究結果としては、強力な一般機能を持つモデルが持続的学習中の忘却に対するより大きな強靭性を示し、推論チェーンが最終回答よりもゆっくり低下して階層的忘却仮説を裏付け、持続的学習アルゴリズムの効果はモデル機能と作業順序の両方に大きく依存し、強化学習設定におけるKL-divergence制約を統合することで、提示します。 MLLM-CTBenchは、MLLMの継続的な指示を調整するための厳格な基準を確立し、アルゴリズムの設計と評価に関する実践的なガイダンスを提供します。
Takeaways、Limitations
•
Takeaways:
◦
MLLMの継続的な指示を調整するための厳格で体系的なベンチマークを提供します。
◦
多次元評価により、最終回答の精度と思考プロセスの質を同時に評価します。
◦
様々な連続学習アルゴリズムと訓練パラダイムを比較分析し,最適戦略を提示した。
◦
モデルの一般的な機能と継続的な学習アルゴリズムの効果との間の相関関係を解明します。
◦
強化学習におけるKL-divergence制約の重要性を強調する。
•
Limitations:
◦
ベンチマークに含まれるデータセットの種類と数は、今後さらに拡大する必要があります。
◦
特定のアルゴリズムやトレーニングパラダイムに偏りがある可能性があります。
◦
実際の応用環境における一般化性能のさらなる研究が必要である。
PDFを見る
Made with Slashpage