/
/
Daily Arxiv
Daily Arxiv
世界中で発行される人工知能関連の論文をまとめるページです。
このページはGoogle Geminiを活用して要約し、非営利で運営しています。
論文の著作権は著者および関連機関にあり、共有する際は出典を明記してください。
Cut2Next: Generating Next Shot via In-Context Tuning
DIVER: A Multi-Stage Approach for Reasoning-intensive Information Retrieval
Omni-Effects: Unified and Spatially-Controllable Visual Effects Generation
Chimera: Harnessing Multi-Agent LLMs for Automatic Insider Threat Simulation
Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization
TurboBias: Universal ASR Context-Biasing powered by GPU-accelerated Phrase-Boosting Tree
AMFT: Aligning LLM Reasoners by Meta-Learning the Optimal Imitation-Exploration Balance
LSDT: LLM-Augmented Semantic Digital Twins for Adaptive Knowledge-Intensive Infrastructure Planning
Do Biased Models Have Biased Thoughts?
Early Detection of Pancreatic Cancer Using Multimodal Learning on Electronic Health Record
LLM Unlearning Without an Expert Curated Dataset
Multi-Faceted Large Embedding Tables for Pinterest Ads Ranking
Echo: Decoupling Inference and Training for Large-Scale RL Alignment on Heterogeneous Swarms
Situated Epistemic Infrastructures: A Diagnostic Framework for Post-Coherence Knowledge
RCR-Router: Efficient Role-Aware Context Routing for Multi-Agent LLM Systems with Structured Memory
Position: The Current AI Conference Model is Unsustainable! Diagnosing the Crisis of Centralized AI Conference
GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy
A Few Words Can Distort Graphs: Knowledge Poisoning Attacks on Graph-based Retrieval-Augmented Generation of Large Language Models
Explaining Time Series Classifiers with PHAR: Rule Extraction and Fusion from Post-hoc Attributions
Role-Aware Language Models for Secure and Contextualized Access Control in Organizations
DynaSwarm: Dynamically Graph Structure Selection for LLM ベースのマルチエージェントシステム
Post-Completion Learning for Language Models
Alternates, Assemble! Selecting Optimal Alternates for Citizens' Assemblies
Argus Inspection: Do Multimodal Large Language Models Possess the Eye of Panoptes?
RAGtifier: Evaluating RAG Generation Approaches of State-of-the-Art RAG Systems for the SIGIR LiveRAG Competition
Unsupervised Document and Template Clustering using Multimodal Embeddings
Saturation Self-Organizing Map
CulturalFrames: Assessing Cultural Expectation Alignment in Text-to-Image Models and Evaluation Metrics
To Judge or not to Judge: Using LLM Judgements for Advertiser Keyphrase Relevance at eBay
Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey
Mj\"olnir: A Deep Learning Parametrization Framework for Global Lightning Flash Density
Federated Learning: A Survey on Privacy-Preserving Collaborative Intelligence
Democracy of AI Numerical Weather Models: An Example of Global Forecasting with FourCastNetv2 Made by a University Research Lab Using GPU
Retrieval-Augmented Generation with Conflicting Evidence
SPIE: Semantic and Structural Post-Training of Image Editing Diffusion Models with AI フィードバック
Evaluating Trust in AI, Human, and Co-produced Feedback Among Undergraduate Students
ProtoECGNet: Case-Based Interpretable Deep Learning for Multi-Label ECG Classification with Contrastive Learning
ChatBench: From Static Benchmarks to Human-AI Evaluation
Adaptive Computation Pruning for the Forgetting Transformer
AI-induced sexual harassment: Investigating Contextual Characteristics and User Reactions of Sexual Harassment by a Companion Chatbot
CrossWordBench: Evaluating the Reasoning Capabilities of LLMs and LVLMs with Controllable Puzzle Generation
Opioid Named Entity Recognition (ONER-2025) から Reddit
OSMa-Bench: Evaluating Open Semantic Mapping Under Varying Lighting Conditions
TIDE: Temporal-Aware Sparse Autoencoders for Interpretable Diffusion Transformers in Image Generation
Flexible Prefrontal Control over Hippocampal Episodic Memory for Goal-Directed Generalization
EvoP: Robust LLM Inference via Evolutionary Pruning
Sleepless Nights, Sugary Days: Creating Synthetic Users with Health Conditions for Realistic Coaching Agent Interactions
Zero-shot Emotion Annotation in Facial Images Using Large Multimodal Models: Benchmarking and Prospects for Multi-Class, Multi-Frame Approaches
PAR-AdvGAN: Improving Adversarial Attack Capability with Progressive Auto-Regression AdvGAN
Forget the Data and Fine-Tuning! Just Fold the Network to Compress
FBFL: A Field-Based Coordination Approach for Data Heterogeneity in Federated Learning
Decoding-based Regression
AdEval: Alignment-based Dynamic Evaluation to Mitigate Data Contamination in Large Language Models
Chemist-aligned retrosynthesis by ensembling diverse inductive bias models
Adaptive Informed Deep Neural Networks for Power Flow Analysis
A Risk Taxonomy and Reflection Tool for Large Language Model Adoption in Public Health
Learning Marmoset Vocal Patterns with a Masked Autoencoder for Robust Call Segmentation, Classification, and Caller Identification
Dynamic Spectrum Access for Ambient Backscatter Communication-assisted D2D Systems with Quantum Reinforcement Learning
Zero-Shot Generalization of Vision-Based RL Without Data Augmentation
Hypergraph-based Motion Generation with Multi-modal Interaction Relational Reasoning
3DFacePolicy: Audio-Driven 3D Facial Animation Based on Action Control
Return Prediction for Mean-Variance Portfolio Selection: How Decision-Focused Learning Shapes Forecasting Models
OE3DIS: Open-Ended 3D Point Cloud Instance Segmentation
VisionUnite: A Vision-Language Foundation Model for Ophthalmology Enhanced with Clinical Knowledge
DreamStory: Open-Domain Story Visualization by LLM-Guided Multi-Subject Consistent Diffusion
MEReQ: Max-Ent Residual-Q Inverse RL for Sample-Efficient Alignment from Intervention
Multidimensional Adaptive Coefficient for Inference Trajectory Optimization in Flow and Diffusion
AIOS: LLM Agent Operating System
Keep Your Friends Close: Leveraging Affinity Groups to Accelerate AI Inference Workflows
From Lab to Field: Real-World Evaluation of an AI-Driven Smart Video Solution to Enhance Community Safety
BELLA: Black box model Explanations by Local Linear Approximations
Artificial Intelligence Software Structured to Simulate Human Working Memory, Mental Imagery, and Mental Continuity
Fitting Description Logic Ontologies to ABox and Query Examples
Interpreting Fedspeak with Confidence: A LLM-Based Uncertainty-Aware Framework Guided by Monetary Policy Transmission Paths
Designing a Feedback-Driven Decision Support System for Dynamic Student Intervention
Large Language Models Do Not Simulate Human Psychology
IRL-VLA: Training an Vision-Language-Action Policy via Reward World Model
InfiAlign: A Scalable and Sample-Efficient Framework for Aligning LLMs to Enhance Reasoning Capabilities
SEAgent: Self-Evolving Computer Use Agent with Autonomous Learning from Experience
Trainable Dynamic Mask Sparse Attention
Edge-Based Multimodal Sensor Data Fusion with Vision Language Models (VLMs) for Real-time Autonomous Vehicle Accident Avoidance
Cognitive Kernel-Pro: A Framework for Deep Research Agents and Agent Foundation Models Training
Probabilistic Active Goal Recognition
When Imitation Learning Outperforms Reinforcement Learning in Surgical Action Planning
Effort-aware Fairness: Incorporating a Philosophy-informed, Human-centered Notion of Effort into Algorithmic Fairness Metrics
UnrealZoo: Enriching Photo-realistic Virtual Worlds for Embodied AI
System~2 Reasoning for Human--AI Alignment: Generality and Adaptivity via ARC-AGI
Time Is a Feature: Exploiting Temporal Dynamics in Diffusion Language Models
Training-Free Text-Guided Color Editing with Multi-Modal Diffusion Transformer
Towards Universal Neural Inference
SPARC: Soft Probabilistic Adaptive multi-interest Retrieval Model via Codebooks for recommender system
Dynamic Uncertainty-aware Multimodal Fusion for Outdoor Health Monitoring
Can We Trust AI to Govern AI? Benchmarking LLM Performance on Privacy and AI Governance Exams
Spatial Traces: Enhancing VLA Models with Spatial-Temporal Understanding
E3-Rewrite: Learning to Rewrite SQL for Executability, Equivalence,and Efficiency
When Deepfakes Look Real: Detecting AI-Generated Faces with Unlabeled Data due to Annotation Challenges
Attacks and Defenses Against LLM Fingerprinting
LyS at SemEval 2025 Task 8: Zero-Shot Code Generation for Tabular QA
Retrospective Sparse Attention for Efficient Long-Context Generation
Rational Inverse Reasoning
Load more
LAG: Logic-Augmented Generation from a Cartesian Perspective
Created by
Haebom
作者
Yilin Xiao, Chuang Zhou, Qinggang Zhang, Su Dong, Shengyuan Chen, Xiao Huang
概要
本論文は、大規模言語モデル(LLM)の知識集約的課題を遂行する際に発生する幻覚(hallucination)問題を解決するために、デカルトの方法的思考に触発された新しいパラダイムである論理増強生成(LAG)を提示します。 LAGは、複雑な質問を論理的な依存関係に従って順番に並べられたアトミックなサブ質問に分解し、それを順番に解決し、以前の回答を活用して後続のサブ質問のコンテキスト検索を導きます。さらに、回答できない副質問に遭遇すると、推論を中断する論理的な終了メカニズムが組み込まれ、エラーの伝播を防ぎ、不要な計算を減らします。最後に、すべてのサブソリューションをまとめて検証された応答を生成します。 4つのベンチマークデータセットを使用した実験の結果、LAGは推論の堅牢性を向上させ、幻覚を減らし、LLMの問題解決方法を人間の認知と一致させることを示しています。既存のRAGシステムの原則的な代替案を提示します。
Takeaways、Limitations
•
Takeaways:
◦
LLMの知識集約的な課題を実行する能力を向上させる:複雑な推論の過程で幻覚を減らし、精度を高めます。
◦
RAGシステムの限界を克服する:直接的な意味論的検索と構造化されていない論理構成への依存を克服します。
◦
人間の認知プロセスに似た問題解決策を提示する:質問の分解と逐次推論による段階的な根拠の提示
◦
計算効率の向上:論理的な終了メカニズムによる不要な計算の削減。
•
Limitations:
◦
サブ質問分解の正確性と効率性への依存性:質問分解が不正確または非効率である場合の性能低下の可能性。
◦
論理的依存性の特定の正確さ:複雑な質問の論理的依存性を正確に把握することは困難です。
◦
特定のドメインのパフォーマンス一般化:使用されたベンチマークデータセット以外のドメインでのパフォーマンスは追加の検証が必要です。
◦
大規模データセットのスケーラビリティ:大規模データセットを処理する際の計算コストの増加の可能性。
PDFを見る
Made with Slashpage