/
/
Daily Arxiv
Daily Arxiv
世界中で発行される人工知能関連の論文をまとめるページです。
このページはGoogle Geminiを活用して要約し、非営利で運営しています。
論文の著作権は著者および関連機関にあり、共有する際は出典を明記してください。
Self-Questioning Language Models
Beyond risk: A proto-framework for assessing the societal impact of AI systems
Supervised Dynamic Dimension Reduction with Deep Neural Network
EmoSteer-TTS: Fine-Grained and Training-Free Emotion-Controllable Text-to-Speech via Activation Steering
LLMs Have a Heart of Stone: Demystifying the Soft Thinking Ability of Large Reasoning Models
Industrial LLM-based Code Optimization under Regulation: A Mixture-of-Agents Approach
Reliable Evaluation Protocol for Low-Precision Retrieval
Landsat30-AU: A Vision-Language Dataset for Australian Landsat Imagery
Tool-integrated Reinforcement Learning for Repo Deep Search
CauKer: classification time series foundation models can be pretrained on synthetic data only
Context-Adaptive Multi-Prompt Embedding with Large Language Models for Vision-Language Alignment
DMSC: Dynamic Multi-Scale Coordination Framework for Time Series Forecasting
HyCodePolicy: Hybrid Language Controllers for Multimodal Monitoring and Decision in Embodied Agents
Entity Representation Learning Through Onsite-Offsite Graph for Pinterest Ads
Evaluating User Experience in Conversational Recommender Systems: A Systematic Review Across Classical and LLM-Powered Approaches
Spatial-Frequency Aware for Object Detection in RAW Image
Learning Pivoting Manipulation with Force and Vision Feedback Using Optimization-based Demonstrations
NCCR: to Evaluate the Robustness of Neural Networks and Adversarial Examples
ChartM$^3$: Benchmarking Chart Editing with Multimodal Instructions
From Entanglement to Alignment: Representation Space Decomposition for Unsupervised Time Series Domain Adaptation
EcoTransformer: Attention without Multiplication
Bob's Confetti: Phonetic Memorization Attacks in Music and Video Generation
SDBench: A Comprehensive Benchmark Suite for Speaker Diarization
True Multimodal In-Context Learning Needs Attention to the Visual Context
Gauge Flow Models
Zero-Shot Neural Architecture Search with Weighted Response Correlation
The Dark Side of LLMs: Agent-based Attacks for Complete Computer Takeover
CAVGAN: Unifying Jailbreak and Defense of LLMs via Generative Adversarial Attacks on their Internal Representations
VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting
A Comparative Study of Specialized LLMs as Dense Retrievers
Sign Spotting Disambiguation using Large Language Models
UnMix-NeRF: Spectral Unmixing Meets Neural Radiance Fields
Thought Anchors: Which LLM Reasoning Steps Matter?
UITron-Speech: Towards Automated GUI Agents Based on Speech Instructions
15,500 Seconds: Lean UAV Classification Using EfficientNet and Lightweight Fine-Tuning
AtmosMJ: Revisiting Gating Mechanism for AI Weather Forecasting Beyond the Year Scale
On the Fundamental Impossibility of Hallucination Control in Large Language Models
Multi-Modal Multi-Task Federated Foundation Models for Next-Generation Extended Reality Systems: Towards Privacy-Preserving Distributed Intelligence in AR/VR/MR
Text-Only Reasoning Unleashes Zero-Shot Multimodal Evaluators
CAIN: Hijacking LLM-Humans Conversations via Malicious System Prompts
Explain Less, Understand More: Jargon Detection via Personalized Parameter-Efficient Fine-tuning
What Lives? A meta-analysis of diverse opinions on the definition of life
A Generative Neural Annealer for Black-Box Combinatorial Optimization
GRILL: Gradient Signal Restoration in Ill-Conditioned Layers to Enhance Adversarial Attacks on Autoencoders
CostFilter-AD: Enhancing Anomaly Detection through Matching Cost Filtering
Mj\"olnir: A Deep Learning Parametrization Framework for Global Lightning Flash Density
RGB-Event based Pedestrian Attribute Recognition: A Benchmark Dataset and An Asymmetric RWKV Fusion Framework
ProtoECGNet: Case-Based Interpretable Deep Learning for Multi-Label ECG Classification with Contrastive Learning
Beyond Wide-Angle Images: Structure-to-Detail Video Portrait Correction via Unsupervised Spatiotemporal Adaptation
CITRAS: Covariate-Informed Transformer for Time Series Forecasting
Rubric Is All You Need: Enhancing LLM-based Code Evaluation With Question-Specific Rubrics
Empirical Analysis of Sim-and-Real Cotraining of Diffusion Policies for Planar Pushing from Pixels
SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models in the Wild
NuPlanQA: A Large-Scale Dataset and Benchmark for Multi-View Driving Scene Understanding in Multi-Modal Large Language Models
The Impact of Item-Writing Flaws on Difficulty and Discrimination in Item Response Theory
Through the Magnifying Glass: Adaptive Perception Magnification for Hallucination-Free VLM Decoding
Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning
Pull-Based Query Scheduling for Goal-Oriented Semantic Communication
Accelerating Focal Search in Multi-Agent Path Finding with Tighter Lower Bounds
RAILGUN: A Unified Convolutional Policy for Multi-Agent Path Finding Across Different Environments and Tasks
UltraSTF: Ultra-Compact Model for Large-Scale Spatio-Temporal Forecasting
PTQ1.61: Push the Real Limit of Extremely Low-Bit Post-Training Quantization Methods for Large Language Models
Foundation Model of Electronic Medical Records for Adaptive Risk Estimation
Tool Unlearning for Tool-Augmented LLMs
Vision without Images: End-to-End Computer Vision from Single Compressive Measurements
How Do Generative Models Draw a Software Engineer? A Case Study on Stable Diffusion Bias
3DTTNet: Multimodal Fusion-Based 3D Traversable Terrain Modeling for Off-Road Environments
DOGR: Towards Versatile Visual Document Grounding and Referring
Real-World Offline Reinforcement Learning from Vision Language Model フィードバック
Causality-Driven Audits of Model Robustness
AUTALIC: A Dataset for Anti-AUTistic Ableist Language In Context
Beyond Adapter Retrieval: Latent Geometry-Preserving Composition via Sparse Task Projection
Pyhgf: A neural network library for predictive coding
Human Bias in the Face of AI: Examining Human Judgment Against Text Labeled as AI Generated
AVG-LLaVA: An Efficient Large Multimodal Model with Adaptive Visual Granularity
Parse Trees Guided LLM Prompt Compression
One Model, Any Conjunctive Query: Graph Neural Networks for Answering Queries over Incomplete Knowledge Graphs
A Value Based Parallel Update MCTS Method for Multi-Agent Cooperative Decision Making of Connected and Automated Vehicles
Fairness Definitions in Language Models Explained
CityLight: A Neighborhood-inclusive Universal Model for Coordinated City-scale Traffic Signal Control
Time Evidence Fusion Network: Multi-source View in Long-Term Time Series Forecasting
Long-Term Visual Object Tracking with Event Cameras: An Associative Memory Augmented Tracker and A Benchmark Dataset
Hulk: A Universal Knowledge Translator for Human-Centric Tasks
From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited
Environmental Sound Classification on An Embedded Hardware Platform
Data Dependency Inference for Industrial Code Generation Based on UML Sequence Diagrams
InqEduAgent: Adaptive AI Learning Partners with Gaussian Process Augmentation
SE-Agent: Self-Evolution Trajectory Optimization in Multi-Step Reasoning with LLM-Based Agents
RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization
Higher Gauge Flow Models
Think How to Think: Mitigating Overthinking with Autonomous Difficulty Cognition in Large Reasoning Models
IS-Bench: Evaluating Interactive Safety of VLM-Driven Embodied Agents in Daily Household Tasks
SLR: Automated Synthesis for Scalable Logical Reasoning
The SWE-Bench Illusion: When State-of-the-Art LLMs Remember Instead of Reason
APOLLO: Automated LLM and Lean Collaboration for Advanced Formal Reasoning
Adversarial Cooperative Rationalization: The Risk of Spurious Correlations in Even Clean Datasets
Learning to Inference Adaptively for Multimodal Large Language Models
Efficient rule induction by ignoring pointless rules
Why the Agent Made that Decision: Contrastive Explanation Learning for Reinforcement Learning
Evaluating Detection Thresholds: The Impact of False Positives and Negatives on Super-Resolution Ultrasound Localization Microscopy
Load more
Real-World Offline Reinforcement Learning from Vision Language Model フィードバック
Created by
Haebom
作者
Sreyas Venkataraman, Yufei Wang, Ziyu Wang, Navin Sriram Ravie, Zackory Erickson, David Held
概要
本論文は、事前に収集された最適でないデータセットからオンライン対話なしでポリシー学習を可能にするオフライン強化学習について説明します。特に、実世界のロボットや安全が重要なシナリオでは、オンラインデータ収集や専門家のデモ収集が遅く、高価で危険な場合に適しています。従来のオフライン強化学習のほとんどの研究は、データセットがすでに作業報酬としてラベル付けされていると仮定していますが、特に実際の世界のように地上の真実状態を把握するのが難しい場合は、かなりの努力が必要です。本稿では、RL-VLM-Fに基づいて、ビジョン言語モデルのアフィニティフィードバックとタスクのテキスト説明を使用して、オフラインデータセットの補償ラベルを自動的に生成する新しいシステムを提案します。この方法では、報酬ラベル付きのデータセットでオフライン強化学習を使用してポリシーを学習します。実際のロボットが服を着せる複雑な作業への適用性を示し、ビジョン言語モデルを使用して最適ではないオフラインデータセットで補償関数を最初に学習し、学習した補償を使用して暗黙のQ学習を介して効果的な服装ポリシーを開発します。剛体および変形可能な物体操作を含むシミュレーション作業でも優れた性能を示し、行動の複製や逆強化学習(inverse RL)などのベースラインよりもパフォーマンスがはるかに優れています。要約すると、ラベル付けされていない最適でないオフラインデータセットからの自動補償ラベリングとポリシー学習を可能にする新しいシステムを提案します。
Takeaways、Limitations
•
Takeaways:
◦
ビジョン - 言語モデルを活用してオフラインデータセットの補償ラベルを自動的に生成する新しい方法を提示することで、オフライン強化学習の実世界適用可能性を高めました。
◦
実際のロボット服の塗装作業とシミュレーション作業の両方において、従来の方法より優れた性能を示した。
◦
複雑な作業に対するオフライン強化学習の効率性を証明しました。
•
Limitations:
◦
ビジョン - 言語モデルのパフォーマンスに依存し、モデルのパフォーマンスの低下がシステム全体のパフォーマンスに影響を与える可能性があります。
◦
使用されるビジョン言語モデルの一般化能力の追加検証が必要です。
◦
特定のタスクに対する補償関数学習の一般化の可能性をさらに高めるための研究が必要です。
◦
実世界のデータセットの多様性と複雑さによって、パフォーマンスが異なる場合があります。
PDFを見る
Made with Slashpage