[공지사항]을 빙자한 안부와 근황
Show more
/
/
Daily Arxiv
Daily Arxiv
世界中で発行される人工知能関連の論文をまとめるページです。
このページはGoogle Geminiを活用して要約し、非営利で運営しています。
論文の著作権は著者および関連機関にあり、共有する際は出典を明記してください。
SystolicAttention: Fusing FlashAttention within a Single Systolic Array
Automated Novelty Evaluation of Academic Paper: A Collaborative Approach Integrating Human and Large Language Model Knowledge
"Is it always watching? Is it always listening?" Exploring Contextual Privacy and Security Concerns Toward Domestic Social Robots
A Group Theoretic Analysis of the Symmetries Underlying Base Addition and Their Learnability by Neural Networks
GHPO: Adaptive Guidance for Stable and Efficient LLM Reinforcement Learning
Extension OL-MDISF: Online Learning from Mix-Typed, Drifted, and Incomplete Streaming Features
When and Where do Data Poisons Attack Textual Inversion?
Truth Sleuth and Trend Bender: AI Agents to fact-check YouTube videos and influence opinions
NLP Meets the World: Toward Improving Conversations With the Public About Natural Language Processing Research
Accurate generation of chemical reaction transition states by conditional flow matching
Benchmarking and Evaluation of AI Models in Biology: Outcomes and Recommendations from the CZI Virtual Cells Workshop
A PBN-RL-XAI Framework for Discovering a "Hit-and-Run" Therapeutic Strategy in Melanoma
NeuTSFlow: Modeling Continuous Functions Behind Time Series Forecasting
THOR: Transformer Heuristics for On-Demand Retrieval
Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs
ブリッジング Literature and the Universe Via A Multi-Agent Large Language Model System
Magneto-radiative modelling and artificial neural network optimization of biofluid flow in a stenosed arterial domain
Symbiosis: Multi-Adapter Inference and Fine-Tuning
Rethinking Data Protection in the (Generative) Artificial Intelligence Era
SoK: Semantic Privacy in Large Language Models
FedRef: Communication-Efficient Bayesian Fine Tuning with Reference Model
Predictable Scale: Part II, Farseer: A Refined Scaling Law in Large Language Models
Position Prediction Self-Supervised Learning for Multimodal Satellite Imagery Semantic Segmentation
ScaleRTL: Scaling LLMs with Reasoning Data and Test-Time Compute for Accurate RTL Code Generation
HueManity: Probing Fine-Grained Visual Perception in MLLMs
AKReF: An argumentative knowledge representation framework for structured argumentation
Large Language Models Often Know When They Are Being Evaluated
Dynamic Risk Assessments for Offensive Cybersecurity Agents
How Hungry is AI? Benchmarking Energy, Water, and Carbon Footprint of LLM Inference
Diffused Responsibility: Analyzing the Energy Consumption of Generative Text-to-Audio Diffusion Models
Flow-GRPO: Training Flow Matching Models via Online RL
On the Need for a Statistical Foundation in Scenario-Based Testing of Autonomous Vehicles
What's Pulling the Strings? Evaluating Integrity and Attribution in AI Training and Inference through Concept Shift
TD-EVAL: Revisiting Task-Oriented Dialogue Evaluation by Combining Turn-Level Precision with Dialogue-Level Comparisons
MobileCity: An Efficient Framework for Large-Scale Urban Behavior Simulation
Semantic Adapter for Universal Text Embeddings: Diagnosing and Mitigating Negation Blindness to Enhance Universality
Leveraging LLMs for User Stories in AI Systems: UStAI Dataset
Large Language Models are Unreliable for Cyber Threat Intelligence
AnnoPage Dataset: Dataset of Non-Textual Elements in Documents with Fine-Grained Categorization
A Thorough Assessment of the Non-IID Data Impact in Federated Learning
Visual Position Prompt for MLLM ベースの Visual Grounding
Neurons: Emulating the Human Visual Cortex Improves Fidelity and Interpretability in fMRI-to-Video Reconstruction
FADE: Why Bad Descriptions Happen to Good Features
FlipConcept: Tuning-Free Multi-Concept Personalization for Text-to-Image Generation
LUMINA-Net: Low-light Upgrade through Multi-stage Illumination and Noise Adaptation Network for Image Enhancement
Towards Geo-Culturally Grounded LLM Generations
Learning to Reason at the Frontier of Learnability
Flexible and Efficient Grammar-Constrained Decoding
PATCH: a deep learning method to assess heterogeneity of artistic practice in historical paintings
The Impact of Modern AI in Metadata Management
Learning an Effective Premise Retrieval Model for Efficient Mathematical Formalization
ChipAlign: Instruction Alignment in Large Language Models for Chip Design via Geodesic Interpolation
Many Objective Problems Where Crossover is Provably Essential
Patherea: Cell Detection and Classification for the 2020s
ViTally Consistent: Scaling Biological Representation Learning for Cell Microscopy
TextDestroyer: A Training- and Annotation-Free Diffusion Method for Destroying Anomal Text from Images
Quantifying calibration error in modern neural networks through evidence based theory
Multi-view biomedical foundation models for molecule-target and property prediction
Reinforced Imitative Trajectory Planning for Urban Automated Driving
Distilling Invariant Representations with Dual Augmentation
Tackling the Abstraction and Reasoning Corpus with Vision Transformers: the Importance of 2D Representation, Positions, and Objects
Linearly-Interpretable Concept Embedding Models for Text Analysis
Towards Understanding Link Predictor Generalizability Under Distribution Shifts
StreakNet-Arch: An Anti-scattering Network-based Architecture for Underwater Carrier LiDAR-Radar Imaging
Enhancing Trust in Autonomous Agents: An Architecture for Accountability and Explainability through Blockchain and Large Language Models
On the Statistical Properties of Generative Adversarial Models for Low Intrinsic Data Dimension
Programming Distributed Collective Processes in the eXchange Calculus
Holistic analysis on the sustainability of Federated Learning across AI product lifecycle
Mathematical Introduction to Deep Learning: Methods, Implementations, and Theory
Epic-Sounds: A Large-scale Dataset of Actions That Sound
From Semantic Web and MAS to Agentic AI: A Unified Narrative of the Web of Agents
On Gradual Semantics for Assumption-Based Argumentation
The Challenge of Teaching Reasoning to LLMs Without RL or Distillation
Continuous Classification Aggregation
Can Prompt Difficulty be Online Predicted for Accelerating RL Finetuning of Reasoning Models?
MacOSWorld: A Multilingual Interactive Benchmark for GUI Agents
GeoChain: Multimodal Chain-of-Thought for Geographic Reasoning
Lost in Transmission: When and Why LLMs Fail to Reason Globally
A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems
System 0/1/2/3: Quad-process theory for multi-timescale embodied collective cognitive systems
Practical Principles for AI Cost and Compute Accounting
Generative Emergent Communication: Large Language Model is a Collective World Model
Proactive Agents for Multi-Turn Text-to-Image Generation Under Uncertainty
Learning Lifted STRIPS Models from Action Traces Alone: A Simple, General, and Scalable Solution
Hallucination Detox: Sensitivity Dropout (SenD) for Large Language Model Training
Life, uh, Finds a Way: Hyperadaptability by Behavioral Search
Governance of Generative Artificial Intelligence for Companies
RACER: Rational Artificial Intelligence Car-following-model Enhanced by Reality
Artificial Intelligence Governance for Businesses
Interpreting Radiologist's Intention from Eye Movements in Chest X-ray Diagnosis
S2WTM: Spherical Sliced-Wasserstein Autoencoder for Topic Modeling
LLM-Based Config Synthesis requires Disambiguation
Characterizing State Space Model (SSM) and SSM-Transformer Hybrid Language Model Performance with Long Context Length
EgoVLA: Learning Vision-Language-Action Models from Egocentric Human Videos
Can We Predict Alignment Before Models Finish Thinking? Towards Monitoring Misaligned Reasoning Models
Unit-Based Histopathology Tissue Segmentation via Multi-Level Feature Representation
Advancing Retrieval-Augmented Generation for Structured Enterprise and Internal Data
Mixture of Raytraced Experts
QuRe: Query-Relevant Retrieval through Hard Negative Sampling in Composed Image Retrieval
AutoVDC: Automated Vision Data Cleaning Using Vision-Language Models
Load more
A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems
Created by
Haebom
作者
Zixuan Ke, Fangkai Jiao, Yifei Ming, Xuan-Phi Nguyen, Austin Xu, Do Xuan Long, Minzhi Li, Chengwei Qin, Peifeng Wang, Silvio Savarese, Caiming Xiong, Shafiq Joty
概要
本論文は、大規模言語モデル(LLM)の推論能力を重点的に扱うアンケート論文である。 LLMの推論能力は高度なAIシステムを既存モデルと区別する重要な機能で、論文では既存の推論方法を2つの次元、つまり推論が行われる時点(推論時点または訓練による推論)を定義する「体制(Regimes)」と推論過程に関与するコンポーネント(スタンドアロンLLM、外部ツールを統合するエージェント) 「構造(Architectures)」に分類する。各次元内では、高品質のプロンプト生成技術に焦点を当てた「入力レベル」と、いくつかの候補サンプルを改善して推論品質を向上させる「出力レベル」の2つの観点を分析します。論文は、推論拡張から学習ベースの推論(DeepSeek-R1など)への移行、エージェントベースのワークフロー(OpenAI Deep Research、Manus Agentなど)への移行などの新しい傾向を強調しています。ワークフローの主な設計を扱う。
Takeaways、Limitations
•
Takeaways:
◦
LLM推論方法を体系的に分類し、発展するLLM推論の分野の理解を深める。
◦
推論拡張から学習ベースの推論への移行、エージェントベースのワークフローへの移行などの主要な傾向を提示します。
◦
さまざまな学習アルゴリズムとエージェントベースのワークフロー設計を包括的に扱います。
•
Limitations:
◦
本論文はアンケート論文であるため、新しい方法論や実験結果を提示しません。
◦
扱う方法論の量が膨大であり、各方法論の詳細な分析が不足する可能性があります。
◦
LLM推論分野の急速な発展により、論文発表時点以降、新しい方法論が登場する可能性がある。
PDFを見る
Made with Slashpage