Share
Sign In
πŸ“’

Tools and Setup

Welcome to your digital data science workshop! In this section, we'll outline the key tools you'll need for your project, how to set up your environment, and some coding best practices to follow. Let's gear up!

1. πŸ“¦ Required Libraries and Packages

Depending on your project's needs, you might need to work with various libraries and packages. Here are some commonly used ones in data science:
β€’
Data manipulation and analysis: pandas, NumPy, and dplyr are your friends here.
β€’
Visualization: For creating beautiful and insightful graphs, consider matplotlib, seaborn, or ggplot.
β€’
Machine learning: scikit-learn, TensorFlow, PyTorch, and Keras are some popular choices.
This is a basic list, and depending on your project needs, there might be additional tools that you'll require.

2. πŸ”§ Environment Setup

Setting up a dedicated environment for your project can help keep your work organized and ensure that your project runs smoothly. Here's how to get started:
β€’
Python Environment: Anaconda is a popular choice for managing Python environments and packages. Here's a quick tutorial to get you started with Anaconda.
β€’
Version Control with Git: Keep track of changes and collaborate efficiently with Git. If you're new to Git, start with this beginner's guide.
β€’
Containerization with Docker: Docker helps you create a consistent environment for your project, ensuring that your work is reproducible. Check out this introductory guide to get started with Docker.

3. πŸ“š Coding Best Practices

Writing clean, efficient, and well-documented code will make your project easier to maintain and share with others. Here are a few tips:
β€’
Code Commenting: Comments are your best friends. They help explain what your code does and why you made certain decisions.
β€’
Code Formatting: Follow PEP 8 for Python code. This will make your code readable and professional. Tools like Black can help you with this.
β€’
Modular Programming: Break your code into functions and modules. This improves readability and reusability of your code.
β€’
Version Control: Regularly commit changes to Git. This not only serves as a backup but also helps you track your progress and revert changes if needed.
Remember, the right tools and a well-organized workspace are the keys to efficient and enjoyable work. Happy coding! πŸŽ‰πŸ› οΈπŸ’»

도ꡬ 및 μ„€μ •

디지털 데이터 κ³Όν•™ μ›Œν¬μƒ΅μ— μ˜€μ‹  것을 ν™˜μ˜ν•©λ‹ˆλ‹€! 이 μ„Ήμ…˜μ—μ„œλŠ” ν”„λ‘œμ νŠΈμ— ν•„μš”ν•œ μ£Όμš” 도ꡬ, ν™˜κ²½μ„ μ„€μ •ν•˜λŠ” 방법, 따라야 ν•  λͺ‡ 가지 μ½”λ”© λͺ¨λ²” 사둀에 λŒ€ν•΄ κ°„λž΅ν•˜κ²Œ μ„€λͺ…ν•©λ‹ˆλ‹€. μ€€λΉ„ν•˜μ„Έμš”!

1. ν•„μˆ˜ 라이브러리 및 νŒ¨ν‚€μ§€

ν”„λ‘œμ νŠΈμ˜ ν•„μš”μ— 따라 λ‹€μ–‘ν•œ λΌμ΄λΈŒλŸ¬λ¦¬μ™€ νŒ¨ν‚€μ§€λ‘œ μž‘μ—…ν•΄μ•Ό ν•  μˆ˜λ„ μžˆμŠ΅λ‹ˆλ‹€. λ‹€μŒμ€ 데이터 κ³Όν•™μ—μ„œ 일반적으둜 μ‚¬μš©λ˜λŠ” λͺ‡ 가지 λΌμ΄λΈŒλŸ¬λ¦¬μ™€ νŒ¨ν‚€μ§€μž…λ‹ˆλ‹€:
β€’
데이터 μ‘°μž‘ 및 뢄석**: pandas, NumPy, dplyr이 여기에 ν•΄λ‹Ήν•©λ‹ˆλ‹€.
β€’
μ‹œκ°ν™”**: 아름닡고 톡찰λ ₯ μžˆλŠ” κ·Έλž˜ν”„λ₯Ό λ§Œλ“€λ €λ©΄ matplotlib, seaborn λ˜λŠ” ggplot을 κ³ λ €ν•΄ λ³΄μ„Έμš”.
β€’
λ¨Έμ‹  λŸ¬λ‹**: scikit-learn, TensorFlow, PyTorch, Kerasκ°€ 인기 μžˆλŠ” μ„ νƒμ§€μž…λ‹ˆλ‹€.
μ΄λŠ” 기본적인 λͺ©λ‘μ΄λ©°, ν”„λ‘œμ νŠΈμ˜ ν•„μš”μ— 따라 ν•„μš”ν•œ 도ꡬ가 μΆ”κ°€λ‘œ μžˆμ„ 수 μžˆμŠ΅λ‹ˆλ‹€.

2. πŸ”§ ν™˜κ²½ μ„€μ •

ν”„λ‘œμ νŠΈ μ „μš© ν™˜κ²½μ„ μ„€μ •ν•˜λ©΄ μž‘μ—…μ„ μ²΄κ³„μ μœΌλ‘œ κ΄€λ¦¬ν•˜κ³  ν”„λ‘œμ νŠΈλ₯Ό μ›ν™œν•˜κ²Œ 진행할 수 μžˆμŠ΅λ‹ˆλ‹€. μ‹œμž‘ν•˜λŠ” 방법은 λ‹€μŒκ³Ό κ°™μŠ΅λ‹ˆλ‹€:
β€’
파이썬 ν™˜κ²½: Python ν™˜κ²½κ³Ό νŒ¨ν‚€μ§€λ₯Ό κ΄€λ¦¬ν•˜κΈ° μœ„ν•΄ Anacondaκ°€ 많이 μ‚¬μš©λ©λ‹ˆλ‹€. μ—¬κΈ° λΉ λ₯Έ νŠœν† λ¦¬μ–Όμ„ 톡해 Anacondaλ₯Ό μ‹œμž‘ν•  수 μžˆμŠ΅λ‹ˆλ‹€.
β€’
Git으둜 버전 μ œμ–΄: Git으둜 λ³€κ²½ 사항을 μΆ”μ ν•˜κ³  효율적으둜 ν˜‘μ—…ν•˜μ„Έμš”. Git을 처음 μ‚¬μš©ν•˜λŠ” 경우 이 초보자 κ°€μ΄λ“œλΆ€ν„° μ‹œμž‘ν•˜μ„Έμš”.
β€’
Docker둜 μ»¨ν…Œμ΄λ„ˆν™”ν•˜κΈ°: DockerλŠ” ν”„λ‘œμ νŠΈμ— μΌκ΄€λœ ν™˜κ²½μ„ μ‘°μ„±ν•˜μ—¬ μž‘μ—…μ„ μž¬ν˜„ν•  수 μžˆλ„λ‘ λ„μ™€μ€λ‹ˆλ‹€. 이 μž…λ¬Έ κ°€μ΄λ“œλ₯Ό ν™•μΈν•˜μ—¬ Dockerλ₯Ό μ‹œμž‘ν•˜μ„Έμš”.

3. πŸ“š μ½”λ”© λͺ¨λ²” 사둀

κΉ”λ”ν•˜κ³  효율적이며 잘 λ¬Έμ„œν™”λœ μ½”λ“œλ₯Ό μž‘μ„±ν•˜λ©΄ ν”„λ‘œμ νŠΈλ₯Ό 더 μ‰½κ²Œ μœ μ§€ κ΄€λ¦¬ν•˜κ³  λ‹€λ₯Έ μ‚¬λžŒλ“€κ³Ό κ³΅μœ ν•  수 μžˆμŠ΅λ‹ˆλ‹€. λ‹€μŒμ€ λͺ‡ 가지 νŒμž…λ‹ˆλ‹€:
β€’
μ½”λ“œ 주석 달기: μ½”λ©˜νŠΈλŠ” κ°€μž₯ 쒋은 μΉœκ΅¬μž…λ‹ˆλ‹€. μ½”λ©˜νŠΈλŠ” μ½”λ“œκ°€ μˆ˜ν–‰ν•˜λŠ” μž‘μ—…κ³Ό νŠΉμ • 결정을 λ‚΄λ¦° 이유λ₯Ό μ„€λͺ…ν•˜λŠ” 데 도움이 λ©λ‹ˆλ‹€.
β€’
μ½”λ“œ μ„œμ‹ 지정: Python μ½”λ“œμ˜ 경우 PEP 8을 λ”°λ₯΄μ„Έμš”. μ΄λ ‡κ²Œ ν•˜λ©΄ 가독성과 전문성을 κ°–μΆ˜ μ½”λ“œλ₯Ό λ§Œλ“€ 수 μžˆμŠ΅λ‹ˆλ‹€. Black](https://black.readthedocs.io/en/stable/)κ³Ό 같은 도ꡬ가 도움이 될 수 μžˆμŠ΅λ‹ˆλ‹€.
β€’
λͺ¨λ“ˆμ‹ ν”„λ‘œκ·Έλž˜λ°: μ½”λ“œλ₯Ό ν•¨μˆ˜μ™€ λͺ¨λ“ˆλ‘œ λ‚˜λˆ„μ„Έμš”. μ΄λ ‡κ²Œ ν•˜λ©΄ μ½”λ“œμ˜ 가독성과 μž¬μ‚¬μš©μ„±μ΄ ν–₯μƒλ©λ‹ˆλ‹€.
β€’
버전 관리: μ •κΈ°μ μœΌλ‘œ Git에 λ³€κ²½ 사항을 μ»€λ°‹ν•˜μ„Έμš”. μ΄λŠ” λ°±μ—… 역할을 ν•  뿐만 μ•„λ‹ˆλΌ 진행 상황을 μΆ”μ ν•˜κ³  ν•„μš”ν•œ 경우 λ³€κ²½ 사항을 되돌릴 수 μžˆλ„λ‘ λ„μ™€μ€λ‹ˆλ‹€.
μ˜¬λ°”λ₯Έ 도ꡬ와 잘 μ •λ¦¬λœ μž‘μ—… 곡간은 효율적이고 즐거운 μž‘μ—…μ˜ ν•΅μ‹¬μž„μ„ κΈ°μ–΅ν•˜μ„Έμš”. ν–‰λ³΅ν•œ μ½”λ”©! πŸŽ‰πŸ› οΈπŸ’»
Translated with DeepL.com (free version)
Made with SlashPage