from sklearn.ensemble import RandomForestClassifier
# create model
model = RandomForestClassifier()
# train model
model.fit(X_train, y_train)
# predict on test set
y_pred = model.predict(X_test)
# evaluate model
from sklearn.metrics import accuracy_score
print("Accuracy:", accuracy_score(y_test, y_pred))
pythonCopy code
from sklearn.ensemble import RandomForestClassifier
# λͺ¨λΈ μμ±
model = RandomForestClassifier()
# λͺ¨λΈ νλ ¨
model.fit(X_train, y_train)
pythonCopy code
# ν
μ€νΈ μΈνΈμμ μμΈ‘
y_pred = model.predict(X_test)
# λͺ¨λΈ νκ°
from sklearn.metrics import accuracy_score
print("μ νλ:", accuracy_score(y_test, y_pred))