Share
Sign In
Lighthouse LLM
Unlocking the Potential of LLMOps: A Practical Guide for Industry Application
L
Lighthouse
👍
In the ever-evolving landscape of artificial intelligence, Large Language Model Operations (LLM Ops) are emerging as a game-changer for businesses striving to harness the power of AI. Implementing LLM Ops effectively can propel your company to new heights, but it requires strategic planning and execution. Here are the key secrets to successfully applying LLM Ops in the industry.
1.
Understand Your Use Case:
Before diving into LLM Ops, clearly define your business objectives and identify the specific problems you aim to solve. Whether it's customer service automation, content generation, or data analysis, a targeted approach ensures that the LLM's capabilities align with your needs.
2.
Data is King:
Quality data is the backbone of any successful LLM application. Invest in curating, cleaning, and annotating your datasets. Ensure diversity and representativeness to avoid biases and enhance the model's performance across different scenarios.
3.
Infrastructure and Scalability:
Deploying LLMs demands robust infrastructure. Leverage cloud platforms like AWS, Google Cloud, or Azure, which offer scalable resources tailored for high-computational tasks. This not only facilitates smooth operations but also accommodates future growth and increased workloads.
1.
Fine-Tuning and Customization:
Generic models often fall short in specialized applications. Fine-tuning your LLM on domain-specific data can significantly improve accuracy and relevance. This step requires expertise but pays dividends in creating models that understand and predict user needs more precisely.
2.
Human-in-the-Loop:
Integrate human oversight to ensure quality and reliability. Humans can provide critical feedback, correct errors, and introduce nuances that automated systems might miss. This collaborative approach enhances model trustworthiness and effectiveness.
3.
Continuous Monitoring and Iteration:
LLM Ops is not a set-and-forget operation. Continuous monitoring for performance, biases, and anomalies is essential. Implement feedback loops and regularly update the model with new data to keep it relevant and accurate.
4.
Ethical Considerations:
Ethics in AI cannot be overstated. Ensure transparency, fairness, and accountability in your LLM applications. Establish guidelines and frameworks to mitigate risks related to privacy, security, and societal impacts.
By following these steps, businesses can unlock the full potential of LLM Ops, driving innovation and efficiency in their operations. Embrace the future of AI with confidence and transform your industry through smart, ethical, and effective LLM practices.
Use Cases in the Finance Industry

Automated Customer Support:
LLMs can enhance customer service by providing instant, accurate responses to common inquiries. This reduces the burden on human agents and improves customer satisfaction.
Fraud Detection:
By analyzing transaction patterns and identifying anomalies, LLMs can help detect fraudulent activities in real-time, providing a layer of security and trust for financial institutions and their customers.
Financial Forecasting:
LLMs can process vast amounts of historical and real-time data to generate accurate financial forecasts. This aids in strategic planning, risk management, and decision-making.
Investment Analysis:
LLMs can analyze market trends, financial news, and historical data to provide insights and recommendations for investment strategies. This helps portfolio managers and investors make informed decisions.
Regulatory Compliance:
LLMs can assist in monitoring and ensuring compliance with financial regulations by analyzing documents and transactions for potential violations, thereby reducing the risk of regulatory penalties.
Kp
Subscribe to 'kpmg-lighthouse'
Welcome to 'kpmg-lighthouse'!
By subscribing to my site, you'll be the first to receive notifications and emails about the latest updates, including new posts.
Join SlashPage and subscribe to 'kpmg-lighthouse'!
Subscribe
👍
Lighthouse
LiLT:A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding
LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding 논문명 : LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding 링크 : https://arxiv.org/abs/2202.13669 출간일 : 2022.02 출간 학회 : ACL 저자 : Wang, Jiapeng, Lianwen Jin, and Kai Ding 소속 : South China University of Technology, Guangzhou, China IntSig Information Co., Ltd, Shanghai, China INTSIG-SCUT Joint Laboratory of Document Recognition and Understanding, China Peng Cheng Laboratory, Shenzhen, China 인용 수 : 117 코드 : https://github.com/jpWang/LiLT https://huggingface.co/docs/transformers/main/model_doc/lilt Abstract 문제 의식 : English 에 특화된 Structured Document Understanding (SDU) 모델들만 있음 → Multi lingual SDU 모델에 Contribution DLA 태스크를 명확히 말하지 않음. Semantic Entity Recognition (SER), Relation Extraction(RE) 에 한정해서 언급 Paragraph 단위의 SER 이 DLA Task 와 같은 것으로 보임
👍
1
Lighthouse
Improving Text Embeddings with Large Language Models
논문 개요 논문명: Improving Text Embeddings with Large Language Models 링크 : https://arxiv.org/pdf/2401.00368 출간일 : 2023.12 출간 학회 : ACL 저자 : Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, Furu Wei 소속 : Microsoft Corporation 인용 수 : 51 코드 : https://github.com/microsoft/unilm/tree/master/e5 Abstract 합성 데이터와 1K 학습 스텝보다 적은 스텝을 사용하여 높은 퀄리티의 텍스트 임베딩 얻는 방법 소개 기존 방법은 많은 양의 weakly-supervised text pair로 프리트레인을 하고 라벨링 된 데이터로 파인튜닝을 해야했음 proprietary(독자적) LLM을 활용하여 93개 언어에 걸쳐 임베딩 태스크를 위한 합성 데이터 생성 오픈 소스 디코더-only LLM을 합성 데이터로 standard contrastive loss로 파인튜닝 라벨링 데이터를 하나도 사용하지 않고 좋은 성능을 보임 합성 데이터와 라벨링 데이터를 섞어 파인튜닝을 더 진행하여 BEIR와 MTEB에서 sota 달성 Introduction 이전 연구들(Glove 등)에서 사전 학습된 단어 임베딩의 가중 평균이 semantic similarity를 측정하는 강력한 기준임을 보여줬지만, 이 방법들은 자연어의 풍부한 맥락 정보를 포착하지 못함(토큰 간의 관계 파악) 프리트레인 언어 모델 등장 이후 NLI 데이터셋에 BERT를 파인튜닝한 예시들: Sentence-BERT, SimCSE BGE, E5: multi-stage 학습 패러다임으로, 수십억 개의 weakly-supervised 텍스트 쌍에 대해 사전 학습 후 고품질 라벨 데이터셋에 대해 파인튜닝
Lighthouse
SELF-RAG: Learning to Retrieve, Generate and Critique Through Self-Reflection
안녕하세요! KPMG 라이트하우스 AI Engineer들은 매주 쏟아지는 LLM 및 모델관련 논문 스터디를 수행하고 실무에 적용해오고 있습니다. 그 중 일부를 발췌하여 여러분들께 공유드립니다. SELF-RAG: Learning to Retrieve, Generate and Critique Through Self-Reflection Abstract LLM은 자체 매개변수 지식에 의존하기 때문에 부정확한 답변을 생성하지만 RAG로 이런 문제를 줄일 수 있음 문서가 관련성이 있는지 확인하지 않은 무분별한 검색과 고정된 수의 검색 문서 통합은 성능을 저하시킴 Self-Reflective Retrieval-Augmented Generation 소개 LM을 on-demand로 상황에 맞게 검색할 수있게 학습시키고, ‘reflection token’을 사용하여 검색한 문서와 생성물을 성찰 reflection token 생성으로 추론 단계에서 LM을 제어하고 다양한 작업 요구사항에 맞춰 LM의 동작을 조정 가능 1. Introduction SELF-RAG: 온디맨드 검색과 self reflection을 통해 LLM의 생성 품질과 정확성 향상 임의의 LM을 end-to-end 방식으로 주어진 작업 입력에 대해 자체 생성 과정을 성찰하도록 학습, 태스크 아웃풋과 중간에 특별한 토큰(reflection token) 출력 Reflection 토큰은 retrieval과 critique 토큰으로 나뉘며 검색 필요성과 생성 성능을 표시