해봄의 아카이브

IT, 경제, 인문학에 대한 이야기를 남깁니다.
말장난
말장난이 자주 일어나는 기술 분야에서는, 듣기에 따라 전혀 다른 의미가 전달되곤 한다. 이는 복잡한 기술적 개념이 짧은 문장으로 압축되어 전해질 때 더욱 극명해진다. 기술 자체가 가진 함의나 배경 맥락은 간과된 채, 자극적인 표현만 부각되면 독자의 오해를 부추기고 불필요한 공포까지 조장한다. 이런 상황이 반복되다 보면 독자는 사실을 왜곡된 형태로 받아들이고, 잘못된 투자나 의사결정을 내리게 될 위험이 커진다. 마크 주커버그의 AI 발언은 대표적인 사례인데 그는 2025년이면 기업들이 중급 엔지니어 역할을 수행할 수 있는 AI를 보유하게 될 것이라고 내다보았다. 코드를 작성하고 효율적으로 운영하는 과정에서 AI가 큰 역할을 할 수 있다는 의미였다. 나아가 이를 통해 인간은 더 창의적이고 실험적인 영역에 집중할 자유를 얻을 것이라고 덧붙였다. 그러나 일부 매체는 이를 ‘AI가 인간을 대체한다’는 공포 중심의 메시지로 바꾸어 전해버렸다. 발언의 정확한 맥락을 외면한 채 “인간 엔지니어가 곧 일자리를 잃는다”는 식으로 보도하니, 독자 입장에서는 AI에 대한 과도한 위기감을 품게 될 수밖에 없다. 조 로건 팟캐스트 원본은 2시간 50분에 달하고 자극적인 헤드라인을 읽는 것은 2.5초 정도 밖에 안걸릴테니... 그럴 순 있지만... 양자 컴퓨팅 분야에서도 비슷한 왜곡과 과장이 벌어졌다. 큐비트나 구글의 양자칩 윌로우처럼 분명 의미 있는 연구 성과가 있었지만, 이것이 곧장 상용화나 범용성을 의미하는 것은 아니다. 그럼에도 빠른 시일 내에 거대한 성과가 나타날 것처럼 전망이 부풀려지자, 투자자들은 검증되지 않은 기업에까지 몰려들었다. 한편 기술력을 실제로 보유한 대기업보다, 시가총액이나 매출이 빈약한 기업의 주가가 출렁이는 이상 현상까지 일어났다. 결국 많은 사람이 손실을 입었고, 정작 기술 발전에 관한 올바른 이해는 뒷전으로 밀려났다. 테마주로서 양자 관련주를 바라본 사람들도 있겠지만 지금 당장 유튜브나 각종 포탈에 양자 컴퓨팅 관련 주식을 찾아보면 교묘하게 과학, 정보성 기사 형태로 언급한 곳이 매우 매우 많다. (유명한 유튜브 채널을 운영하는 누구는 책을 냈던데 그는 물리학에 대한 기초적 지식도 없고 양자 더 나아가 양자 컴퓨팅이 뭔지도 제대로 이해하지 못했다.) 이 과정에서 간과해서는 안 될 점은 정보 전달자의 책임이다. 책임이라 함은 법적인 처벌로 귀결되어야 한다는 의미가 아니다. 오히려 자기 언급에 대한 인정과 수용의 책임에 가깝다. 즉, 자신이 잘못된 해석을 하거나 혹은 무리하게 정보를 확신에 차서 전달했다면, 왜 그런 결론에 도달했는지, 왜 그렇게 보도했는지 명확히 밝혀야 한다. 여기에는 자신의 판단 오류를 솔직하게 인정하는 자세가 필수적이다. 누군가가 만든 정보를 옮기는 입장이라면, 원문에 충실했는지, 맥락을 왜곡하지 않았는지 면밀히 점검해야 한다. 만약 이미 잘못 전달된 부분이 있다면 그 사실을 알리고 바로잡는 과정을 거치는 것이 독자에 대한 도리일 것이다. 아는 것만 말을 하던지 틀렸으면 인정을 하고 널리 알리던지가 되어야 하는데 이걸 하는 경우를 잘 못 봤다. 안그런 사람도 유명해지거나 어느 순간 부턴 바뀌더라. 정보를 수용하는 입장에서도 자신의 돈, 시간, 에너지를 쓰게 된다면 한 번씩 원문을 찾아보길 바란다. 몰론 이것은 매우 어려운 일이다. 모두가 이게 잘되면 애초에 이런 말장난을 하는 애들 자체가 적겠으나... 늘 하는 말이지만 대부분의 사람들은 글을 읽지 않고 찾아보고 싶지 않아한다. 저런 말장난을 치는 이들이 많아지면 생기는 가장 큰 문제는 사기 피해자가 늘어난다는 것이 아니라 사회 구성원들이 서로를 의심하게된다. 더 나아가 매체에서 나오는 정보를 대부분 믿지 않게 된다. 이렇게 되면 결국 사회결속 더 나아가서 사회적 신뢰를 유지하는 비용만 늘어난다. 이게 무슨 낭비이고 누굴 위한 행태일까? 결국, 말, 글이라는 것은 그 자체로서 큰 힘을 지닌다. 기술 분야처럼 복잡하고 전문적인 영역일수록, 말의 맥락을 제대로 파악하지 못하면 심각한 정보 왜곡으로 번지기 쉽다. 독자는 확인을 게을리하지 않음으로써 스스로를 지켜야 하고, 정보 전달자는 자신의 발언을 점검하고 책임질 줄 알아야 한다. 이를 통해 우리는 말장난과 왜곡의 파도를 잠재우고, 기술 발전이 주는 진짜 의미와 가치를 더욱 명료하게 마주할 수 있다.
👍
3
임자, 해봤어?
과거의 프로덕트 매니저(PM)는 사양서 작성과 일정 관리 같은 프로세스 중심의 업무를 주로 담당했습니다. 그러나 시장 환경이 급변하고 고객 요구가 다양해지면서, 이제 PM은 직접 제품을 만들어내는 실행자로 자리매김하고 있습니다. 단순히 종이 위 계획을 조율하는 것을 넘어, 실제 결과물을 제작하고 빠르게 피드백을 받는 과정을 통해 제품 가치를 증명해야 하는 시대가 되었습니다. 프로토타입: 가치 검증의 필수 도구 이러한 변화의 핵심에는 프로토타입 제작이 있습니다. 예전에는 문서로 아이디어를 정리하고 추정치를 나열하는 방식이 일반적이었습니다. 하지만 사용자들은 글이나 표로만 설명된 기획안보다 실제 작동하는 프로토타입에서 훨씬 직관적인 가치를 느낍니다. 그래서 많은 PM들이 노코드(No-Code)·로코드(Low-Code) 플랫폼을 활용해 MVP(Minimum Viable Product)를 빠르게 만들어냅니다. 이렇게 구현한 프로토타입을 통해 실시간으로 시장 반응을 확인하고, 애초에 놓쳤던 문제들을 조기에 발견하여 개선할 수 있습니다. 이 과정은 제품 완성도를 높이고 출시 시점을 앞당기는 데도 큰 도움이 됩니다. 대기업과 스타트업에서의 PM 역할 차이 대기업에서는 의사결정 절차가 복잡하고 보고 라인이 길기 때문에, PM이 서류와 프레젠테이션 중심의 업무에 묶이는 경우가 많습니다. 여러 부서의 이해관계를 조율하면서 한정된 범위 안에서 일정과 품질을 관리하는 데 집중해야 하는 문화가 자리 잡고 있습니다. 반면 스타트업에서는 아이디어를 신속하게 실행해보고, 그 결과물을 시장에 즉시 내놓아 피드백을 받는 행동력이 더 강조됩니다. 프로토타입 하나가 제품 가능성을 증명하는 직접적인 통로가 되기도 하며, 이를 계기로 새로운 투자나 파트너십 기회를 잡는 사례도 많습니다. 대기업 문화가 무조건 뒤처졌다는 의미는 아닙니다. 대기업 내부에서도 애자일(Agile) 팀이나 사내벤처 프로젝트를 운영하며, 스타트업에 가까운 속도와 유연성을 도입하려고 노력하고 있습니다. 이를 통해 대규모 조직도 기민한 실행력과 혁신적인 아이디어를 동시에 얻어내고자 합니다. 기술 발전과 PM의 확장된 역할 AI와 자동화 도구가 활발하게 활용되면서, PM이 갖춰야 할 기술적 이해도는 점점 더 중요해지고 있습니다. 특히 노코드·로코드 도구가 대중화됨에 따라, 전문 개발자가 아니더라도 초기 프로토타입을 직접 만들어볼 수 있는 환경이 마련되었습니다. 이는 아이디어 검증에 필요한 시간과 비용을 크게 줄여주며, AI 기반 분석 툴을 이용해 사용자 행동 데이터를 빠르고 정확하게 파악할 수도 있습니다. 그 결과 제품 개선의 우선순위를 결정하는 데에도 유리합니다. 물론 모든 PM이 코드까지 짜야 할 필요는 없습니다. 다만 간단한 수정이나 UI 프로토타이핑 정도를 직접 처리할 수 있다면, 개발이나 디자인 팀과의 소통이 훨씬 원활해집니다. 이러한 협업 비용 절감 능력은 조직의 규모와 무관하게 높이 평가받습니다. PM은 이제 더 많은 것을 커버하게 됩니다 이전 포스팅에서도 말했듯 PM은 이제 과거처럼 계획과 관리에만 머무르지 않을 겁니다. 직접 프로토타입을 만들고, 시장과 고객의 피드백을 즉시 반영해 가치를 검증하는 역할까지 수행합니다. 이는 스타트업뿐 아니라 대기업에서도 중요한 경쟁 우위가 되었습니다. 시장에서 통하는 제품을 누구보다 빨리 만들어내고, 얻은 피드백을 곧바로 반영해 제품을 개선하는 실행 역량이야말로 요즘 PM에게 가장 요구되는 자질입니다. 그리고 이를 뒷받침하는 기술적 역량이 점차 중요해지면서, PM의 역할 역시 더 폭넓고 도전적인 방향으로 진화하고 있습니다.
👍
1
대화를 망치는 6가지 방법
“말 한 마디로 천 냥 빚을 갚는다”라는 속담이 있습니다. 반대로 말 한 마디가 관계를 깨어놓기도 하지요. 우리는 일상에서 타인과의 대화를 통해 생각을 교환하고 감정을 나누지만, 어느새 “내가 이런 말을 왜 했지?”라는 후회를 경험하기도 합니다. 크리스마스 이브를 맞이해 묵혀놨던 글 중 하나를 꺼내어 봅니다. 저 역시 대화를 하다 많이 하는 실수 입니다. 늘 제가 말하듯 청자가 이해를 못하면 화자의 잘못이 크기에 화자를 중심으로 대화를 망치는 것들에 대해 이야기 해보고자 합니다. 실제로 갈등 상황에서 사람들이 사용하게 되는 언어 패턴에는 공통점이 존재합니다. 논리적이고 객관적인 표현을 쓴다고 생각해도, 막상 뒤돌아보면 격앙된 감정 때문에 공격적인 말을 내뱉었음을 알게 되는 경우가 많습니다. 심리학자들이 이를 “파괴적 대화 패턴(Destructive Communication Patterns)”으로 부르는 이유가 바로 여기 있습니다. 여섯 가지 대표적 파괴적 패턴[판단, 비난, 강요, 비교, 당연시, 죄책감(합리화)]은 자칫 무심코 쓰이는 말 속에 녹아들어, 상대방과의 “연결”을 단절시켜 버립니다. 이 글에서는 이 여섯 가지 패턴이 어떤 식으로 나타나고, 왜 문제인지, 그리고 이를 어떻게 극복할 수 있는지 살펴보겠습니다. 물론, 우리 하나하나가 이 패턴들을 피하면 우리 모두가 덜 싸우지 않을까요? 판단(Judging) 정의: 상대방의 행동, 성격, 동기 등을 미리 결론지어 단정하는 언어 패턴 예시 문장 “네가 원래 그렇지 뭐.” “보나 마나, 또 그럴 줄 알았어.” “넌 어차피 안 바뀔 거야.” 판단은 겉으로 보기에 단순한 평가처럼 보이지만, 사실상 상대방에게 변화와 소통의 가능성을 열어놓지 않습니다. “넌 원래 이런 애”라는 한 마디에, 대화 상대는 “나는 이미 낙인찍혀 있구나”하고 느끼며 무력감을 느낍니다. 전세계 어딜가도 가장 많이 사용되는 패턴입니다. 인종, 국가, 언어, 문화, 성별, 나이 등으로 미리 판단지어 생각하는 방식 입니다. 아이러니 하게도 모두는 이렇게 범주화 되어 사전에 판단 되어 버리는 것을 불쾌해 하지만 정작 본인도 이러는 경우가 많습니다. 심리학에서는 이러한 ‘판단’ 언어가 고정관념(Fixed Mindset)을 강화한다고 봅니다. Carol Dweck 의 연구에 따르면, 상대방을 “고정된 특성”으로 단정 짓는 태도는 협력적 관계를 방해하며, 갈등을 자주 유발한다고 합니다. 한쪽이 “너는 절대 못 바뀐다”고 못 박아버리면, 상대방은 스스로 변화를 시도하기를 포기하거나, 억울함만 키우게 됩니다. 개선 방법 상황 중심으로 말하기 “왜 매번 늦어?” 대신 “오늘 지각해서 중요한 논의를 놓쳐서 아쉬웠어”처럼, 구체적인 상황을 지목하십시오. 호기심 가져보기 “네가 왜 그랬을까?”라고 자문하는 자세로 접근하면, 단정 짓기보다 원인을 함께 탐색하게 됩니다. 비난(Blaming) 정의: 상대방을 직접적으로 공격하거나, 책임을 일방적으로 전가하는 언어 패턴 예시 문장 “이 꼴이 난 건 전부 너 때문이야!” “어떻게 매번 문제를 일으켜? 넌 정말 답이 없어.”
👍
3
OpenAI 대규모 업데이트 정리
기술과 AI가 만나 이룩해낸 혁신의 속도는 그야말로 눈부십니다. 어느새 우리 곁에 자연스레 자리 잡은 인공지능이 이제는 텍스트를 넘어, 이미지·영상·음성 등 다채로운 방식으로 일상을 바꾸어 나가고 있습니다. 특히 이번 12월 5일부터 16일까지 순차적으로 발표된 오픈AI의 업데이트 시리즈는 이러한 흐름을 총집약해 보여준다는 점에서 많은 이들의 관심을 모으고 있습니다. ChatGPT Pro 출시에 이어, 강화학습 기반 미세조정 연구 프로그램, 텍스트 기반 비디오 제작 플랫폼, 개발자 도구 확장, 그리고 차세대 모델 시연 등 각종 내용이 매일같이 쏟아져 나오는 모습은 그야말로 “AI 종합 생태계”가 구축되고 있음을 시사하죠. 이제 본격적인 기능 소개에 앞서, 이 방대한 발표가 어떠한 의미를 지니는지 간략히 짚어보고자 합니다. 1일차: o1 및 ChatGPT Pro 출시 ChatGPT Pro 출시 (월 $200) o1 및 o1-mini 모델 접근권한 실시간 웹 검색 고급 데이터 분석 DALL-E 3 통합 32K 토큰 지원 2일차: 강화 학습 미세 조정 연구 프로그램 강화학습 미세조정 연구 프로그램 발표 연구자, 대학, 기업 대상 알파 액세스 맞춤형 모델 개발 지원 실시간 성능 모니터링 API 통합 환경 제공 3일차: Sora 출시 Sora 비디오 생성 플랫폼 공개 최대 1분 길이 고품질 비디오 생성 텍스트 기반 비디오 제작 기존 비디오 편집/확장 DALL·E 기술 기반 구축 4일차: Canvas 기능 업데이트
👍😱😀
9
데이터 라이센싱, 새로운 기회
인공지능(AI)이 세계를 뒤흔들고 있다. 한때 단순히 쌓여만 있던 수많은 데이터는 이제 경제·사회 전반을 재편하는 핵심 동력으로 자리매김했다. 과거에는 정보가 단지 "저장되는 것"에 의미가 있었다면, 지금은 "학습되고 활용되는 것"이 곧 가치를 결정한다. 이러한 전환 속에서 전통적인 저작권 기반의 수익 모델이나 API 호출량에 의존한 데이터 판매 전략은 점차 한계를 드러내고 있다. 바로 이 지점에서 부상하는 개념이 ‘데이터 라이센싱(Data Licensing)’이다. 이는 데이터를 단순 구매·판매 대상이 아닌, 활용과 조건, 그리고 새로운 가치 창출 방법을 포괄하는 진화된 개념으로 정의한다. 데이터 라이센싱을 통해 기업은 단순히 콘텐츠를 배포하거나 API를 제공하는 데서 그치지 않고, 데이터를 AI가 학습하기 적합한 형태로 구조화하고, 이를 통해 보다 유연한 수익 모델을 구축하는 시도로 나아간다. 특히 이제는 이미지, 음성, 영상 등 멀티모달(multi-modal) 데이터가 본격적으로 활용되는 시대다. 단순 텍스트 태깅에서 벗어나 다양한 매체에 의미 있고 활용 가능한 꼬리표를 붙여 AI가 이를 더욱 정교하게 이해하고 응용하도록 유도하는 과정이 필수적이다. 이로써 AI 모델은 더욱 풍부한 문맥을 파악하고, 제한된 데이터로도 심도 있는 학습을 진행할 수 있게 된다. 이러한 변화는 데이터 소유자에게 새로운 비즈니스 기회를 안겨주는 동시에, 데이터 활용자에게도 이전에 없던 다양성과 확장성을 제공한다. 기존 모델의 한계: 저작권과 API 기반 수익 구조의 문제점 전통적으로 데이터 기반 수익화 전략은 크게 두 축으로 이뤄졌다. 첫째, 확고한 저작권을 기반으로 음원, 영상, 문서 등 기존 콘텐츠를 판매하거나 스트리밍하여 수익을 올리는 방식이 있었다. 둘째, 특정 데이터에 접근할 수 있는 API를 제공하고, 그 호출 빈도나 사용량에 따라 과금하는 모델이 널리 활용됐다. 하지만 이 두 가지 모델은 AI 시대에 들어 다음과 같은 제약을 노출한다. 활용 범위의 제한성: 저작권 기반 모델은 명확한 권리 보호를 제공하지만, 데이터 활용 범위를 사전에 정의해놓는다. 이는 데이터 재가공이나 재활용, 그리고 새로운 형태의 콘텐츠 생성에 제약을 가한다. 반면, API 기반 접근 방식은 호출량 단위로 요금을 부과하므로, 광범위한 데이터 활용이 자칫 고비용 구조를 야기한다. 복잡한 거래 과정과 높은 진입장벽: 데이터 사용을 위한 계약, 라이선스, 권한 부여 과정이 복잡하게 얽혀있어 기업·기관 입장에서 손쉬운 접근이 어렵다. 이는 특히 소규모 스타트업이나 연구 기관이 고품질 데이터에 접근하는 것을 제한한다. 즉, 고부가가치의 AI 모델 개발을 원하는 이들에게 초기 진입장벽으로 작용한다. 데이터 가치와 활용 간극: 데이터 소유자는 콘텐츠를 소유하고 있으나, 진정한 가치는 AI 모델이 해당 데이터를 학습하여 창출하는 새로운 통찰, 예측, 서비스 개선 등에 있다. 단순 소유권 판매나 사용권 허가만으로는 이 ‘활용 가치’를 극대화하기 어렵다. 데이터 라이센싱의 의미와 부상 배경 데이터 라이센싱은 이러한 한계를 극복하는 대안으로 주목받고 있다. 이는 단순히 "데이터를 제공하는 권한"을 넘어, 데이터 사용자가 다양한 조건과 목적에 맞추어 데이터를 재해석하고 가공하도록 허용하는 새로운 수익화 전략이다. 쉽게 말해, 데이터 라이센싱은 데이터 활용 가능성을 열어둔 ‘맞춤형’ 공급 계약이라 할 수 있다. 최근 레딧과 미국의 언론사들은 데이터 라이센싱 계약을 통해 인공지능 학습을 진행하는 회사들에게 크롤링을 더 쉽게 제공하고 수익모델을 새로이 창출했다. 물론, 그 중심에는 레딧과 같은 커뮤니티 플랫폼들도 끼어 있어 이는 기존의 트레픽 기반의 광고 수익 모델만 고민하던 곳들에게 완전 새로운 기회를 주었다. (수천억짜리 딜을 성사) 데이터라이센싱은 저작권과는 다른 개념인데 구별과 특징은 다음과 같다. 구분 저작권(Copyright) 데이터 라이선싱(Data Licensing) 정의 창작자가 자신의 창작물에 대해 가지는 법적 권리로, 작품의 복제, 배포, 공연 등을 통제할 수 있습니다. 이는 창작물의 표현 형식 자체를 보호합니다. 데이터나 정보의 사용 권한을 부여하는 계약으로, 데이터베이스나 대규모 데이터 세트의 활용을 허가합니다. 이는 데이터의 집합이나 구조를 보호하며, 특히 AI 모델 학습을 위한 데이터 사용에 관련됩니다. 보호 대상 문학, 예술, 음악, 영상 등 창작물의 표현 형식 데이터베이스, 데이터 세트 등 정보의 집합체 권리 발생 시점
👍
5
회고를 멈춰선 안돼!
저는 지난 2015년부터 꾸준히 개인 회고를 해왔고, 2016년부터 2023년까지는 ‘회고해봄’이라는 공개 회고 프로그램을 운영하며 여러 사람들과 함께 성장의 순간을 나누어 왔습니다. 그러나 이제 이 공개 회고 활동을 더는 진행하지 않기로 결정하였습니다. 단, 이것이 회고 자체의 가치나 필요성을 부정하는 것은 아닙니다. 우선, 회고라는 작업은 매우 의미 있고 멋진 활동임을 분명히 하고 싶습니다. 회고를 통해 우리는 과거에 했던 일들을 차분히 정리할 수 있으며, 좋았던 점과 개선할 점, 달성한 것과 도중에 포기한 것을 명확하게 인식하게 됩니다. 이를 바탕으로 미래를 설계하거나 과거의 경험을 재해석할 수 있죠. 어떤 사람은 1년에 한 번 몰아서 회고를 하거나, 짧게 시도하다가 금세 흐지부지한다고 아쉬움을 표현할 수도 있습니다. 그러나 그 빈도가 어떠하든, 짧은 시간이든 긴 시간이든, 심지어 다른 사람들에게 보여주기 위한 목적이든 간에 회고는 ‘하는 것’ 그 자체만으로도 충분히 유의미합니다. 중요한 것은 자신에게 솔직해지는 과정이며, 이를 통해 성찰의 계기를 마련하는 데 있습니다. 다양한 회고 기법과 방법론이 존재한다는 점도 매력적입니다. KPT(Keep-Problem-Try)부터 시계열 기법, 사진 연상법 등 다양한 접근법을 활용하면, 각자의 성향과 상황에 맞추어 회고를 즐길 수 있습니다. 저 역시 지난 5년 넘게 여러 사람과 함께 회고를 진행하며, 보다 좋은 회고 방식에 대해 논의하고, 새로운 관점과 경험을 공유해 왔습니다. 이러한 과정에서 다른 이들의 삶을 엿보고 통찰을 얻는 일은 제게도 큰 영감이 되었습니다. 그럼에도 불구하고, 이제 제가 중단하려는 것은 ‘다수와 함께하는 공개 회고’입니다. 이는 개인적인 회고를 포기하는 것이 아니라, 공개 프로그램 형태로 진행하던 회고 활동을 멈춘다는 의미입니다. 그 이유는 다음과 같습니다. 유료 회고 프로그램의 등장: 사회 초년생이나 주니어를 대상으로 한 유료 회고 서비스가 증가하고 있습니다. 이는 회고를 단순한 ‘성찰의 장’이 아닌 일종의 ‘상품’으로 만드는 경향을 낳고 있습니다. 회고를 빙자한 판매 행위: 회고라는 이름 아래 강의나 템플릿을 판매하는 사례가 늘어나며, 이로 인해 회고 고유의 본질적 가치를 흐리게 만드는 상업적 움직임이 생겨나고 있습니다. 과도한 권위 부여: 회고라는 행위를 지나치게 포장하거나, ‘회고를 해야만 성숙한 사람’이라는 식의 과도한 권위를 부여하는 모습도 보입니다. 이로 인해 누군가에게 회고는 더 이상 자유롭고 솔직한 자기성찰이 아닌, ‘반드시 해야 하는 의무’나 ‘평가’의 대상으로 비춰질 수 있습니다. 애초에 회고는 팬과 노트 혹은 노트북, 스마트폰만 있어도 그냥 할 수 있는 행동 입니다. 늘 말하지만 이상한 데 돈 쓰지 말고 친구들과 연말 파티를 하던, 고기를 사먹건, 더 가치 있는 곳에 사용하는 방법도 많습니다. 물론, 본인이 돈을 쓰지 않으면 안할 것 같다면 ... 할 수 야 있겠지만 제가 몇년을 돌아보니 오히려 진심으로 한 해를 공유하고 성실하게 할 것이 아닌면 그냥 기분만 내는 요식 행위로 이 회고라는 행위가 끝나버릴 수 있습니다. 제가 공개 회고를 멈추는 것은, 이러한 흐름 안에서 회고가 본래 지니고 있던 자발적 의미가 훼손되는 것을 더 이상 지켜보고 싶지 않기 때문입니다. 개인에게 솔직하고 자유로운 성찰이 되어야 할 회고가, 어느 순간 상품화되거나 권위화되는 모습은 제가 회고를 통해 나누고자 했던 가치와 어긋납니다. 또한, 오히려 이런 식으로 회고라는 것 자체가 '돈'이 드는 것으로 보여지는 순간 부터 저는 잘 못하겠더라구요. 홍대병 같은 걸까요? 노션때도 그렇고 뭔가 개인적으로 쉽거나/당연한 것을 파는 것에 대한 개인적 거부감이 있는 것 같습니다. 그렇다고 해서 제가 앞으로 회고 자체를 멈추는 것은 아닙니다. 개인적인 차원에서 회고를 계속 이어갈 것이며, 이를 통해 제 삶을 돌아보고 성장의 단서를 찾는 과정을 유지할 것입니다. 다만 이전처럼 공개적으로 회고를 진행하거나, 다른 사람들의 회고를 이끌며 상호 교류하는 형태는 당분간 중단하려고 합니다. 저는 이제 조금 더 개인적인 공간과 방식으로 회고를 활용할 생각입니다. 이렇게 함으로써 ‘회고’라는 행위가 본래 품고 있던 자유로운 성찰과 진솔한 대화를, 다시 한 번 되찾고 싶습니다.
👍🏻👍
2
어떻게 훌륭한 이야기꾼이 되는가?
현대인은 하루에도 수십, 수백 개의 이야기를 접한다. 뉴스를 훑고, 소셜 미디어에 뜨는 짧은 영상을 보고, 친한 친구의 일상을 들으며 우리는 자연스럽게 ‘말’과 ‘이야기’의 흐름 속에 산다. 하지만 같은 사실을 전해도 어떤 사람의 이야기에는 귀를 기울이게 되는 반면, 다른 이의 말은 곧장 흘려버리기 십상이다. 도대체 무엇이 훌륭한 이야기꾼과 평범한 전달자를 갈라놓는 걸까? 누군가 나에게 유튜브나 숏츠를 해보라 했는데 영상을 모니터링하고 편집하려니 개인적으로 자기애가 부족하여 포기한 적이 여러번 있었다. 당시 고민한 이야기를 어떻게 해야하는 가? 그리고 어떻게 전달애햐하는가를 작성해 보았다. 다행히 이 질문은 나만 하는 것이 아니라, 이 질문을 품고 인류는 오래전부터 스토리텔링의 본질과 작동 방식을 탐구해왔다. 고대 그리스의 아리스토텔레스(Aristoteles)가 《시학(Poetics)》에서 서사의 구조와 카타르시스의 중요성을 언급한 이래로, 조셉 캠벨(Joseph Campbell)의 《천의 얼굴을 가진 영웅(The Hero with a Thousand Faces)》은 고대 신화와 현대 서사를 관통하는 공통된 영웅 서사를 밝혔고, 조너선 갓설(Jonathan Gottschall)은 《이야기 본능(The Storytelling Animal)》을 통해 인간이 왜 ‘이야기하는 동물’인지를 설득력 있게 설명했다. 또한 칩과 댄 히스(Chip & Dan Heath)는 《스틱!(Made to Stick)》에서 기억에 오래 남는 스토리의 요건을 정리하며, 이야기가 왜 단순한 정보보다 더 강력한 설득력과 지속성을 갖는지 보여주었다. 1. 스토리텔링, 단순 정보전달을 넘어 감정과 경험을 공유하는 예술 ‘이야기’란 단순히 사실을 나열하는 것이 아니다. 훌륭한 이야기꾼은 말 한마디를 통해 청중이 머릿속에 장면을 그리게 하고, 그 안에 깃든 감정을 살아나게 한다. 이는 어린 시절 밤늦게 들었던 할머니의 옛날이야기나, TED 강연 무대에서 눈빛 하나로 방 청중을 압도하는 연사의 이야기를 통해 쉽게 확인할 수 있다. 이야기는 수치를 읊는 것보다 오래 기억에 남고, 정교한 논리보다 쉽게 공감을 얻는다. 그 이유는 이야기가 청중의 감정과 상상을 자극하기 때문이다. 고전적 이야기 구조는 수많은 연구자들이 강조한 부분이다. 아리스토텔레스의 3막 구조나 캠벨이 지적한 ‘영웅 여정(Hero’s Journey)’은 모두 이야기 전개에 일정한 패턴이 존재함을 보여준다. 예를 들어 다음과 같은 흐름이 효과적일 수 있다. 도입: 청중의 시선을 붙잡는 ‘훅(Hook)’을 제시한다. 이를 위해선 “당신은 불과 1분 전까지만 해도 상상조차 못했던 비밀을 마주한 적 있는가?”와 같은 도발적인 질문이나, “여름밤, 고요한 시골길 가로등 밑에서 나는 평생 잊지 못할 한마디를 들었다.” 같은 분위기 있는 장면 묘사가 유용하다. 전개: 배경과 갈등을 서서히 드러내며 긴장감을 쌓아간다. 예를 들어, 출장지의 낯선 도시에서 우연히 만난 한 노인이 들려준 이야기, 혹은 의도치 않은 실수로 벌어진 사소한 소동을 꺼내보라. 청중은 “그래서 어떻게 됐지?”라는 궁금증을 품는다. 절정: 이야기 속 긴장감이 최고조에 이르렀을 때, 핵심 비밀을 드러내거나 극적인 변화를 제시한다. 이 순간에는 말의 속도를 약간 늦추고, 목소리를 낮추어 청중으로 하여금 숨을 죽이고 집중하게 만들 수 있다. 해결과 마무리: 문제를 해결하거나 새로운 관점을 제시하며 이야기를 맺는다. 청중은 비로소 퍼즐 조각이 맞춰지는 쾌감을 느끼거나, 이전과 달라진 시선으로 세상을 보게 된다. 조셉 캠벨이 영웅 서사를 통해 강조한 바와 같이, 이 구조는 보편적인 힘을 지닌다. 청중은 이러한 내러티브 패턴 속에서 심리적 안정감을 느끼고, 이야기 전체를 자연스럽게 따라간다. 감정과 디테일을 통한 공감대 형성 스토리텔링에는 감정이 필수적이다. 숫자나 데이터로는 쉽게 전해지지 않는 정서적 울림이, 생생한 묘사 속에서 사람들의 마음을 흔든다. 칩과 댄 히스가 《스틱!》에서 지적했듯, 추상적 개념보다 구체적이고 감각적인 표현이 훨씬 오래 남는다. 예를 들어, “슬펐다”라고 말하는 대신 “귓가를 스치는 바람 소리조차 낯설게 느껴질 정도로 마음이 무거웠다”라고 표현해보자. 또는 “무서웠다” 대신 “밤하늘 아래에서 낯선 발소리가 다가올 때, 숨이 막혀와 목울대가 얼어붙는 듯했다”라고 구체화하면 청중은 이야기를 체화하고 그 감정에 빠져든다. 정서적 공감대는 듣는 이를 마치 무대 위의 연극을 관람하는 관객처럼 만든다. 그들은 단순히 정보를 소화하는 것이 아니라, 이야기를 ‘체험’한다. 정보의 단계적 제공: 궁금증을 미끼로 긴장 유지하기 훌륭한 이야기꾼은 청중에게 모든 진실을 한꺼번에 쏟아내지 않는다. 대신 천천히, 단계적으로 정보를 공개한다. 이를 통해 청중은 마치 추리 소설을 읽는 독자처럼, 다음 장면을 궁금해하고 진실을 추적하게 된다. 예를 들어, “출발점에서 모든 사실을 밝히는” 대신, 먼저 작은 단서를 건네라. “그가 손에 쥔 오래된 사진 속 인물이 누구인지 알기까진 시간이 좀 걸렸다”라는 식으로 말하면 청중은 “도대체 누구길래?”라는 궁금증을 갖게 된다. 이러한 서술 방식은 《이야기 본능》에서 갓설이 강조한 인간 본연의 호기심과 상상력을 자극한다. 목소리, 속도, 침묵: 언어를 음악처럼 다루기 언어는 단지 의미만 전달하는 것이 아니라, 말하는 방식에서도 힘을 갖는다. 마치 음악의 리듬이 감정을 움직이듯, 목소리 톤, 속도, 강약 조절 그리고 침묵도 이야기를 살리는 요소다. 중요한 순간에는 속도를 늦추어 긴장감을 높이고, 부드러운 장면에서는 목소리를 낮추어 편안함을 전달한다. 극적인 전개 직전에는 잠시 말을 멈추어, 청중이 “지금 무슨 일이 벌어질까?”라고 생각하게 만든다. 이처럼 말 자체를 하나의 공연으로 만든다면, 청중은 그 흐름에 몸을 맡기게 된다. 청중 참여: 상상력으로 이야기에 함께 뛰어들게 하기
👍📚
7
계엄, 우리에겐 힘이 있지
개인적으로 교류하는 분 중에 May라는 분이 있다. 그 분이 항상 말하는 말 중에 "우리에겐 힘이 있지"라는 표현을 자주 쓰셨는데 2024년 12월 3일 대한민국에서 뉴스를 보다 이 문장이 머리 속에 문득 떠올랐다. 이 문장의 매력은 우리라는 범주화와 힘이라는 뚜렷한 위계의 의미이기 때문일 것이다. 인간은 개개인의 인생을 살지만 "우리"라는 사회에 들어가서 자신의 책임과 특징을 감추고 각자 지닌 "힘"에 따라 그 사이에서 역할을 한다. 정보 자본: 현대의 새로운 힘 오늘날 '우리'가 지닌 힘은 다양하다. 사회학자 피에르 부르디외는 자본을 크게 세 가지로 분류했다. 경제적 자본, 문화적 자본, 그리고 사회적 자본이 그것이다. 경제적 자본은 재화와 부를 의미하고, 문화적 자본은 개인이 습득한 지식과 문화, 즉 생활 습관이나 취미를 말한다. 사회적 자본은 인맥과 사회적 관계에서 나오는 힘이다. *국내에선 <구별짓기(Distinction)>로 번역되어 들어왔으나 도리스 메르틴의 <아비투스>라는 책 덕분에 더 널리 알려져 있다. 그런데 현대 사회에서는 이 세 가지 자본 외에 반드시 추가되어야 할 자본이 있다. 그것은 바로 정보 자본이다. 정보 자본은 단순히 정보의 획득과 저장에 그치지 않고, 그 정보의 분석과 활용에서 진정한 가치를 발휘한다. 정보는 현대 사회에서 가장 쉽게 접근할 수 있는 자본 중 하나이며, 인터넷과 SNS를 통해 누구나 손쉽게 얻을 수 있다. 유튜브에서 전문가들이 무료로 정보를 나누고 있는 것이니. 정보 자본은 기존의 자본들과 달리, 상대적으로 쉽게 얻을 수 있다는 장점이 있다.(소위 말하는 '딸깍'이 가능하다.) 경제적 자본이나 문화적 자본은 축적에 시간이 오래 걸리고, 사회적 자본은 네트워크 형성과 유지에 상당한 노력이 요구된다. 이와 비교하면 정보 자본은 상대적으로 쉽게 접근 가능하다. 하지만 너무 많은 정보는 오히려 사람들을 혼란에 빠뜨릴 수 있다. 과도한 정보의 홍수는 판단을 흐리게 하고, 그 속에서 옳고 그름을 분별하기 어렵게 만든다. 정보와 권력: 미셸 푸코의 시각에서 미셸 푸코는 지식과 권력의 관계를 설명하며, 둘은 서로 분리될 수 없는 관계에 있다고 주장했다. 푸코는 지식이 권력의 핵심이자 그 자체로서 권력의 연장선임을 강조했다. 그 대표적인 예로 의학을 들 수 있다. 의학적 지식을 통해 우리는 건강한 사람과 건강하지 않은 사람을 나누고, 나아가 건강 문제를 해결할 수 있는 사람이 권력을 가지게 된다. 다시 말해, 의학적 지식은 그 자체로 사람들의 삶을 통제할 수 있는 권력으로 작용한다. *개인적으로 미셸 푸코의 <감시와 처벌>, <권력과 공간>을 꼭 읽어보기를 추천한다. 권력은 정보를 통해 자신을 유지하고 강화한다. 권력은 규범과 상식을 만들어내고, 이를 통해 '정상적인' 행동을 정의하며 그 틀에서 벗어나는 것을 통제한다. 그러나 이에 저항하는 힘 역시 정보에서 나온다. 예를 들어, 어떤 그룹이 권력의 감시를 피해 집회를 계획한다면, 그들은 자신들만의 정보를 공유하고 서로의 결속을 통해 새로운 움직임을 만들어낸다. 결국 정보 싸움에서 승리하는 쪽이 새로운 권력을 형성하게 되는 것이다. 정보 민주주의와 권력의 균열 공화국 체제에서 대통령이라는 자리는 일반적으로 가장 많은 정보와 지식에 접근할 수 있는 권한을 지닌다. 그러나 정보에 접근한다고 해서 모든 문제가 해결되는 것은 아니다. 지그문트 바우만이 말한 <액체 현대>에서 언급한 것 처럼, 현대 사회의 정보는 고정되지 않고 유동적이다. 이전 시대에는 합리성과 이성과 같이 딱딱한(Solid) 것이 중요한 가치로 여겨졌다면, 현대에 이르러서는 유동성(Liquid)과 불확실성이 주요한 특징이 되었다. 우리는 시스템 자체에 문제가 생겼을 때 즉각 대응할 수 있는 능력을 잃어버린 것은 아닌가 하는 우려도 든다. 지그문트 바우만의 액체 현대는 현대 사회의 유동성과 불확실성을 지적한다. 스스로의 판단 기준이 내적인 것에만 의존하고, 객관적 지표나 타당성이 약화된 사회에서 공동체의 결속력은 약해질 수밖에 없다. 최근 호주에서 진행된 온라인 안전 개정안(소셜 미디어 최소 연령)도 같은 맥락에서 시행 된 것인데 이걸 이야기 하자면 너무 길어질 것이다. 과연 소셜 미디어는 청소년에게만 해로운가? 하는 것 같은 생각 어쩌면 다음 시대의 새로운 이념은 모든 자본을 평등하게 분배하라는 요구일지도 모른다. 오해 할까 덧붙이면 이는 공산주의 개념이 아니다. 기술적으로 극한으로 진보하여 모든 것이 풍족해진 상태를 의미한다. 이것은 몇몇 인공지능 낙관주의를 주장하는 사람들이 말하는 기본소득과도 맞닿아 있다. 아니면 오히려 정보를 제한해달라는 요청일 수도 있다. 세상이 너무 똑똑해지면 오히려 삶이 팍팍해진다. 다른 사람의 행복이 나에게는 비교와 박탈감으로 다가올 수 있기 때문이다. 정보 민주주의의 장점과 그 한계 정보 민주주의의 가장 큰 장점은 단일한 권력이 파행을 일으키거나 무법한 행위를 할 때, 그 정보를 즉시 공유하고 대응할 수 있다는 점이다. 디지털 민주주의는 이러한 정보 민주주의를 한 단계 더 발전시킨 형태로, 기술의 도움을 받아 직접 민주주의의 확장성을 극복하려는 시도이다. 스마트폰과 인터넷 기술을 통해 시민들은 보다 쉽게 정책에 참여하고 자신의 의견을 피력할 수 있다. 또한, 인터넷 커뮤니티와 소셜 네트워크 상에서의 '좋아요', 투표, 의견 공유 등은 직접적인 사회적 자본의 축적과도 같은 효과를 낸다. 앞서 말했듯이, 정보는 가장 쉽게 얻을 수 있는 자본이다. 그러나 그만큼 제대로 활용하는 데 있어서는 많은 노력이 필요하다. 정보는 단순히 축적한다고 해서 가치가 생기는 것이 아니다. 중요한 것은 정보를 비판적으로 수용하고, 그 맥락을 이해하며, 그 정보에서 의미를 찾아내는 것이다. 대통령은 우리 국민의 자유와 행복을 약탈하고 있는 파렴치한 종북 반국가세력을 일거에 척결하고 자유 헌정 질서를 지키기 위해 비상계엄을 선포한다고 하였지만 국민들은 생각보다 정보를 받아들임에 있어 판단을 하고 저항을 하는 존재였다. 우리가 정보 홍수 속에서 살아가며 진정한 힘을 발휘하기 위해 필요한 것은 정보에 대한 이해력과 비판적 사고 능력이다. 정보 민주주의와 디지털 민주주의는 단일한 권력이 전체 사회를 좌지우지할 수 없게 만드는 강력한 장치를 제공하지만, 그만큼 우리 각자에게도 큰 책임을 요구한다. 정보는 모두에게 평등하게 분배될 수 있지만, 그것을 어떻게 활용할지는 각자의 몫이다. 아이러니 한 것은 가짜뉴스, 뉴미디어, 편향언론 등에 휘둘리고 있다고 말하는 사람들 조차 결국에는 정보를 제대로 걸러 듣지 않거나 한 쪽의 이야기만을 듣거나 하며, 자신은 옳은 것이라는 자만에 빠져 있는 경우가 대다수이다. 또한 아무리 고등교육을 수료했거나 자본이 풍족해도 번거로움, 귀찮음 등의 이유로 정보를 입 안에 떠먹여 주다 못해 턱까지 움직여 달라는 태도인 경우가 많다. 우리에게 힘이 있기에 위해선 정보 자본은 현대 사회에서 가장 중요한 자본으로 자리 잡았다. 피에르 부르디외가 말한 경제적, 문화적, 사회적 자본에 비해, 정보 자본은 가장 쉽게 얻을 수 있는 자본이지만, 그만큼 활용하기는 어렵다. 정보의 시대에서 진정한 힘은 단순히 정보를 많이 소유하는 데 있지 않다. 중요한 것은 정보를 이해하고, 이를 바탕으로 비판적이고 창의적인 결정을 내리는 능력이다. 우리 모두가 이러한 능력을 키워나갈 때, May가 말한 "우리의 힘"은 진정한 의미를 갖게 될 것이다. 정보가 민주화된 사회에서 우리는 단순한 정보 소비자가 아니라, 정보의 주체로서 그 힘을 제대로 이해하고 활용할 수 있어야 한다. 그렇게 할 때 비로소 정보 자본은 우리의 삶을 더 나은 방향으로 이끄는 원동력이 될 수 있을 것이다. +덧 흥미로운 토론 주제를 봤는데 다음과 같았습니다.
2
👍
7
전문가와 비전문가 구분 짓는 것: 책임감
얼마 전, 국내 최대의 강의 플랫폼에서 일하시는 소위 히트하는 강의를 여러 개를 만드신 분과 오랫동안 대화를 할 시간이 있었습니다. 그러면서 "전문성이라는 무엇인가?"에 대해 이야기를 나누고 "좋은 강의란 무엇일까?" 같은 내용에 대해 이야기를 나누었습니다. (전문가라 해서 좋은 강의를 만드는 것이 아니고, 전달력이 좋다 해서 늘 옳은 말만 하는 것도 아닌...) 그러다 자연스럽게 최근 SNS 등에서 전문가란 무엇인가 등으로 많은 사람들의 이야기가 있었다는 것을 알게 되었습니다. 이것을 구분 짓는 것은 학위(Degree), 자격증(License), 경력(Career), 평판(Reputation), 재정(wealth) 등 어떤 기준 일까?에 대해 이야기 하다 결국 책임감(Acountability) 이야기를 하게 되었습니다. 현대 사회에서 '전문가'라는 단어는 자주 사용되지만, 그 의미와 그에 따르는 책임에 대해 깊이 생각해볼 필요가 있습니다. 우리는 자격증이나 학위를 취득하기 위해 노력하는 사람들의 열정을 존중해야 하며, 누구나 자신의 의견을 표현할 수 있는 자유를 인정해야 합니다. 그러나 이러한 노력과 자유가 진정한 전문성을 결정짓는 유일한 기준은 아닙니다. 진정한 전문가는 자신의 발언과 행동에 대한 책임을 지는 사람입니다. 제가 굳이 이것을 Responsibility(책임)이라는 표현을 안쓰는 이유는 Responsibility는 의무를 동반하는 책임이고, Acountability는 자신의 행동과 결정에 대한 결과에 대해 답변하고 수용하는 책임이기 때문 입니다. 이하 나오는 책임은 모두 Acountability를 의미 합니다. 지식 노동자와 전문가의 차이 모든 지식 노동자는 서비스 마인드, 전문성, 전달력이 필요합니다. 이는 지식을 전달하는 사람부터 지식을 생산하고 발전시키는 사람까지 모두에게 요구되는 기본 요소입니다. 이를 레스토랑에 비유하면, 지식을 전달하는 사람은 홀서빙 직원과 같고, 지식을 생산하고 품질을 높이는 사람은 요리사와 같습니다. 모든 역할이 중요하지만, 모든 것을 완벽하게 해내는 사람은 파인다이닝 레스토랑을 운영하는 셰프처럼 특별한 가치를 지닙니다. 레스토랑에서는 각자의 역할에 따라 책임을 다하면 됩니다. 음식에 문제가 생겼을 때 셰프는 이를 인정하고 수정하며 사과합니다. 서빙 과정에서 실수가 발생하면 홀 직원이 이를 해결합니다. 파인다이닝에서는 셰프가 직접 나와 음식에 대해 설명하고 서빙을 겸하는데, 이는 자신의 작품에 대한 책임과 자부심을 나타냅니다. 이처럼 각자가 자신의 위치에서 책임을 지는 자세가 중요합니다. 표현의 자유와 책임감 누구나 자신의 의견을 말할 수 있는 표현의 자유가 있지만, 그 발언에 대한 책임도 따릅니다. 도덕성은 시대나 문화에 따라 변할 수 있지만, 책임감은 보편적이고 변하지 않는 가치입니다. 특히 전문가라면 자신의 말과 행동이 미치는 영향을 깊이 인식하고, 잘못이 있을 때 이를 인정하고 개선하려는 자세가 필요합니다. 사회적으로 사이버 렉카 등이 문제가 된 이유도 마찬가지 입니다. 무언가의 뉴스나 소식을 전파하고 책임(정확한 정정, 사과)을 지거나 그것에 대해 검토, 숙의 등을 가지지 않고 그저 조회수만을 위해 거짓도 상관없이 사용하면서 비판 받아 왔습니다. 여기서 우리가 흔히 말하는 박사 학위(Ph.D.)에 대해 생각해볼 수 있습니다. Ph.D.는 Doctor of Philosophy의 약자입니다. 여기서 'Philosophy(철학)'는 특정 학문 분야를 넘어, 지식에 대한 깊은 이해와 진리에 대한 탐구, 그리고 그에 따른 책임감을 상징합니다. 이는 박사 학위를 가진 사람이 자신의 전문 지식뿐만 아니라, 그 지식이 사회에 미치는 영향에 대해 깊이 고민하고 책임져야 함을 의미합니다. 우리가 진정으로 필요로 하는 것은 자신의 오류를 받아들이고, 개선하고, 이해하며, 토의할 수 있는 자세입니다. 이것이 바로 전문가를 전문가답게 만드는 요소입니다. 전문가는 자신의 한계를 인정하고, 새로운 지식을 습득하며, 타인의 의견을 존중합니다. 또한, 자신의 전문성이 사회에 미치는 영향을 고려하여 책임 있는 행동을 실천합니다. 사회적 인정과 그 이면의 책임 사람들을 전문가로 대우하기 위해 우리는 자격증, 학위, 경력, 경제적 성공 등 사회적으로 합의된 조건을 고려합니다. 이러한 조건들은 그 자체로 가치 있지만, 그에 따른 책임이 병행될 때에만 진정한 의미를 갖습니다. 자격증을 따기 위해, 학위를 받기 위해 들인 노력은 존중받아야 하지만, 그 노력의 결실을 사회에 긍정적으로 환원하는 책임감이 필요합니다. 이는 잘못된 정보를 제공했을 때 이를 인정하고 수정하며, 필요한 경우 사과하는 태도로 나타납니다. 사람은 언제든 틀릴 수 있습니다. 인정하고 고치고 무엇이 잘못되었는지 이야기를 하면 됩니다. 그리고 그것에 대해 책임을 지면 됩니다. 종종 사람들은 자신이 못가진 것을 시기하고 질투하기 때문에 신 포도(Sour Grapes) 전략을 사용합니다. "석박사 그거 다 헛 똑똑이야.", "저 사람들은 허세 부리는 거야"같은 식으로 서로를 비하 하기도 합니다. 자신의 위치를 지키거나 가지지 못한 것에 대해 타인을 비방하는 것은 비겁한 행동입니다. 각자의 역할이 있고, 잘못된 사실에 대해서는 고치면 됩니다. 상황에 따라 "컵에 물이 반이나 남았네"라고 말할 수도 있고, "컵에 물이 반밖에 안 남았네"라고 말할 수도 있습니다. 그러나 "컵에 물이 250ml가 있네"라는 사실은 변하지 않습니다. (물컵이 500ml라는 전제 하에...) 책임감이 완성하는 전문성 전문가와 비전문가를 구분하는 것은 단순히 자격이나 지식의 많고 적음이 아닙니다. 자격증과 학위는 그 노력과 열정을 보여주지만, 그것을 진정한 전문성으로 완성시키는 것은 책임감 있는 태도입니다. 우리가 흔히 사용하는 'Ph.D.'라는 학위가 철학을 의미하는 것도, 지식에 대한 깊은 이해와 더불어 그 지식이 사회에 미치는 영향을 고려하는 책임감을 강조하기 때문입니다. 최근 사회적으로도 특정 직업군이나 특정 업계를 OO 기술자니 하는 말로 비하하는 것도 사실 사회적으로 정의된 책임을 지지 않을 때 사용 되는 것도 마찬가지 입니다. 우리는 모두 각자의 분야에서 전문성을 추구하며, 그 과정에서 발생하는 실수나 오류에 대해 책임지는 자세를 가져야 합니다. 이는 개인의 성장뿐만 아니라 사회 전체의 신뢰를 높이고, 긍정적인 변화를 이끌어낼 것입니다. 우리 모두가 전문가로서의 책임감에 대해 다시 한 번 생각해보고, 자신의 행동이 미치는 영향을 깊이 성찰하는 계기가 되길 바랍니다. 결국, 책임을 지는 자세가 전문성을 완성하고, 그 전문성이 사회를 더욱 풍요롭게 만들 것이라 믿습니다.
👍👍🏻
20
인공지능 탑재 PC, 생산성을 높이는 도구인가?
최근 IT 업계에서는 인공지능(AI)이 탑재된 개인용 컴퓨터, 즉 AI PC가 뜨거운 이슈입니다. 많은 사람들이 AI PC가 우리의 업무 방식을 혁신하고 생산성을 높일 것이라고 기대하고 있습니다. 그러나 실제로는 그렇지 않을 수 있다는 연구 결과가 나와 주목받고 있습니다. 최근 Intel은 자신들의 CPU를 탑재한 노트북에서 적극적으로 AI PC라는 표현을 쓰게 권장하고 있는데 이것에 대한 해명?과 어떻게 써야하는지를 설명하고 싶어 발행한 뉘앙스 입니다. AI PC 사용자가 오히려 생산성이 떨어진다? Intel이 독일, 프랑스, 영국의 6,000명을 대상으로 진행한 조사에서 흥미로운 결과가 나타났습니다. AI PC를 사용하는 사용자들이 전통적인 PC 사용자들보다 오히려 더 많은 시간을 작업에 소비한다는 것입니다. 이들은 매주 평균 15시간을 이메일 작성, 회의 기록, 파일 관리 등의 '디지털 허드렛일(Dgital chores)'에 사용하고 있었습니다. Intel은 AI를 활용하면 이 중 약 4시간을 절약할 수 있다고 주장하지만, 실제로는 그렇지 않았습니다. 이것은 어디까지나 성능이나 벤치마크에 의한 것일 뿐이지 실제 사용자들이 AI 도구를 효과적으로 활용하지 못해 오히려 시간이 더 걸리는 역효과가 발생하는 경우가 많다는 조사 결과가 발표되었습니다. 사용자와 AI 간의 소통 문제 그렇다면 왜 이런 일이 발생했을까요? 가장 큰 원인은 사용자들이 AI와 효과적으로 소통하지 못하기 때문입니다. AI 도구를 활용하려면 적절한 명령어를 입력하고 원하는 결과를 얻기 위한 방법을 알아야 하지만, 많은 사용자들은 이에 대한 경험과 지식이 부족합니다. 또한, 사용자 중 86%가 개인정보 보호와 데이터 보안에 대한 우려를 가지고 있었습니다. 이는 AI 활용에 대한 심리적 장벽으로 작용하여, 도구의 사용을 주저하게 만듭니다. AI PC에 대한 오해와 낮은 인식 조사에서는 AI PC에 대한 인식 부족도 드러났습니다. 44%: AI PC를 단순한 '마케팅용 기믹'이나 '미래지향적 개념'으로 생각합니다. 53%: AI PC가 기술 전문가나 창작자만을 위한 도구라고 믿습니다. 하지만 AI PC를 실제로 사용해 본 사람들의 반응은 달랐습니다. 사용해 본 사람 중 64%가 다음 업그레이드 시에도 AI PC를 고려하겠다고 답한 반면, 경험이 없는 사람들 중에서는 32%만이 긍정적인 태도를 보였습니다. 이는 경험이 기술 수용에 큰 영향을 미친다는 것을 보여줍니다. 생산성 향상을 위한 해결책은? 그렇다면 어떻게 해야 할까요? Intel의 부사장 로버트 할록은 "기술 리더로서 AI 도구를 효과적으로 사용하는 방법에 대한 교육을 제공하는 것이 우리의 역할"이라고 말했습니다. 이는 사용자 교육이 핵심이라는 의미입니다. 물론 이것은 인텔의 마케팅적 수사이기도 하고... 인공지능이라는 표현의 대표성을 가지고 싶어서 언급하는 것 같긴 합니다. 사용자 교육과 지원을 강화해야 합니다. 직관적인 인터페이스 제공: 복잡한 명령어 대신 쉽게 사용할 수 있는 UI를 제공합니다. 단계별 가이드와 튜토리얼: 초보자도 따라할 수 있는 학습 자료를 제공합니다. 실제 사례 공유: 일상 업무에 어떻게 AI를 활용할 수 있는지 구체적인 예시를 제시합니다. 데이터 보안과 프라이버시 문제 해결도 중요합니다. 투명한 데이터 처리: 데이터가 어떻게 사용되고 보호되는지 명확하게 알려줍니다. 보안 기술 강화: 로컬 데이터 처리와 암호화 기술을 통해 프라이버시를 보호합니다.
😂
1
학습하는 법을 학습하기
개인적으로 인공지능 서비스 강의 시장과 FOMO를 유도하는 홍보 문구, 마케팅이라는 미명하에 진행되는 행동들에 대해 여러 이야기를 했지만 이제 사실 약간 포기했습니다. 사실, 사그라들줄 알았는데 전혀 그렇지 않고 오히려 더 늘어난 느낌이고 최근 통계를 보니 국내 ChatGPT 앱 사용자가 500만명을 넘었다는 걸 보면서 이 경쟁은 더 심화되겠구나라는 생각이 들었습니다. 이제 목표치가 딱 나와버렸고 자신들이 뛰어든 시장이 벌써 10% 였다는 걸 알아버린 이상 남은 것을 차지하기 위해 더욱 많아지면 많아졌지 줄진 않을 것 입니다. 인공지능 기술 FOMO에 대처하는 방법 디자인과 기획의 영역에서 기술의 발전은 우리의 일상과 업무 방식을 크게 바꾸고 있습니다. 특히 인공지능(AI) 기술의 빠른 발전과 그 영향력은 디자이너와 기획자들에게도 "배워야 한다"는 압박감을 주고 있습니다. 새로운 기술을 따라잡지 못하면 도태될 것 같은 두려움, 즉 기술 FOMO(Fear of Missing Out)는 누구에게나 익숙한 감정일 것입니다. 그러나 이러한 불안은 단순히 피해야 할 감정이 아니라, 잘 관리하면 성장의 기회가 될 수 있습니다. 그렇다면 어떻게 하면 기술 FOMO를 극복하고 변화하는 환경 속에서 주도적으로 성장할 수 있을까요? 1. 학습 방법을 이해하라: 자신만의 학습 스타일 찾기 우리는 모두 다른 방식으로 배우고 이해합니다. 어떤 사람은 스스로 실험하며 배우는 걸 좋아하고, 또 어떤 사람은 동료와 대화하거나 문서를 꼼꼼히 읽으며 배웁니다. 자신에게 맞는 학습 방법을 이해하는 것이 기술 FOMO를 극복하는 첫걸음입니다. 기술은 단순히 “많이” 배우는 것이 아니라, “어떻게” 배우느냐가 중요합니다. 학습 효율은 개인의 스타일에 따라 크게 달라지기 때문입니다. 예를 들어, 많은 디자이너들은 손으로 그려보고 실험하며 배우는 방식을 선호합니다. 반면 기획자는 데이터를 분석하거나 사용 사례를 살펴보는 방식이 더 효과적일 수 있습니다. 실천 방법 과거에 성공적으로 기술을 익혔던 방식을 떠올려 보세요. 다양한 학습 방법(온라인 강의, 책, 실습, 동료와의 토론)을 시도해보고 자신에게 맞는 것을 선택하세요. 새로운 기술을 처음 접할 때 겪었던 어려움과 극복 방법을 기록해두세요. 이는 앞으로 비슷한 상황에서 유용한 지침이 됩니다. 2. 정보 과잉에서 벗어나라: 트렌드에 휩쓸리지 않기 새로운 기술이 등장할 때마다 소셜 미디어와 커뮤니티는 뜨겁게 달아오릅니다. "이 기술을 배우지 않으면 뒤처진다"는 이야기로 넘쳐나기도 합니다. 하지만 이러한 트렌드는 실제로 필요한 기술인지 아닌지 냉정하게 판단해야 합니다. 많은 기술이 등장하지만, 실제로 산업 전반에 영향을 미치는 기술은 일부에 불과합니다. 커뮤니티에서 자주 언급되는 기술이라고 해서 모두가 사용하거나 필수적인 것은 아닙니다. 디자이너와 기획자에게는 자신의 직무와 프로젝트에 어떤 기술이 진짜 유용한지 구분하는 능력이 필요합니다. 실천 방법 대중적으로 논의되는 기술이 있다고 해서 그것이 반드시 "모두가 사용하는 기술"이라는 의미는 아닙니다. 온라인 커뮤니티에서의 유행에 휩쓸리지 마세요. 새로운 기술이 실제로 적용되는 사례와 그 효과를 조사하세요. 트렌드를 참고하되, 자신의 직무와 관련이 있는 기술인지 판단하세요. 관심 있는 기술에 대해 직접 작은 프로젝트를 통해 실험하며 필요성을 검증하세요. 3. 핵심 기술에 집중하라: 키프레임 기술 이해하기
1
👍
9
"국내 최초의 인공지능 기본법"의 매력
이전에 인공지능과 관련한 법에 대해 이야기를 여러번 했습니다. 문명화된 시대에 법은 우리에게 최소한의 규칙과 우리가 사회적으로 활동하는데 있어 타인에게 피해를 주지 않는 선을 지키는 데 주요한 역할을 합니다. 그렇기에 무언가 신기술이 나오고 법이 생기는게 꼭 '규제'라는 개념으로 생각 되지 않아 됩니다. 하지만, 대부분은 법안 통과와 해당 기술에 대한 깊은 이해 없이 발의 되는 경우가 자주 있습니다. 이전에도 21대 국회에서 십여개의 인공지능 관련 법안이 나왔으나 유야무야 묻힌 것에 정쟁 말고도 이러한 이유도 있을 것 입니다. 22대 국회에서는 어떻게 되려나 하고 국정감사기간이 끝나고 논의가 될 것을 기대하며 있던 중, 위와 같은 뉴스가 왔습니다. 해당 뉴스에 보면 이런 내용이 있습니다. '고위험 AI’에 대한 규제 수준이 될 것으로 보인다. 권칠승 의원안은 고위험 AI를 개발하는 기업이 정부 검증을 받지 않으면 징역형(신체형)까지 처벌하도록 하고, 최민희 의원안은 고위험 AI에 대해 정부에 왜곡된 정보를 제공하거나 시정조치를 따르지 않으면 3000만원 이하의 과태료를 부과하는 내용을 담고 있다. 이해민 의원안은 고위험 AI에 대해 시정조치를 따르지 않으면 5000만원 이하의 과태료를 부과하는 조항을 포함하고 있다. 고위험 AI라는 개념은 아마 EU AI Act에서 사용되는 분류법을 차용한 것 같아 용어의 정의에 대한 모호함은 그렇다 쳐도 처별 규정과 책임에 대한 부분이 매우 안타까움을 너머 이상하다고 느껴 이 글을 쓰게 되었습니다. 과도한 처벌 규정과 모호한 법적 책임 먼저 눈에 띄는 것은 처벌 규정의 비현실성입니다. 권칠승 의원안의 경우 고위험 AI 개발 기업이 정부 검증을 받지 않으면 징역형까지 처할 수 있게 했습니다. 최신희 의원안은 3000만원, 이해민 의원안은 5000만원의 과태료를 규정했습니다. 현재 AI 기술의 한계를 전혀 고려하지 않은 처벌 규정입니다. 예를 들어 ChatGPT나 Claude와 같은 생성형 AI의 경우, 할루시네이션(환각, 잘못된 정보 생성)은 피할 수 없는 기술적 한계입니다. 이는 Vector DB나 RAG(Retrieval Augmented Generation) 등 최신 기술을 적용하더라도 100% 해결할 수 없는 문제입니다. 실제로 최근 인터넷 검색을 통해 최신 정보를 가져오거나, 앞서 말한 RAG 방식으로 출처를 명기해 잘못 된 정보를 표시 하지 않는 방법들이 시도 되고 있지만 애초에 검색 결과가 잘못 되었거나, 인용된 정보가 틀렸을 경우도 자주 발생하기에 이 방식도 무조건 적으로 진실을 말하는 방법은 아닙니다. 특히 할루시네이션이라는 기술적으로 벌어지는 일을 "왜곡된 정보 제공시 처벌"이라는 규정을 두는 것은, 마치 "사람이 재채기할 때마다 벌금을 물리는 것"과 다름없습니다. 많은 분들이 써보시는 ChatGPT나 Claude만 하더라도 사용자가 프롬프트를 입력하는 곳 바로 하단, 답변 하단 등에 "ChatGPT는 실수를 할 수 있습니다. 중요한 정보를 확인하세요.", "Claude can make mistakes. Please double-check responses." 이런 문구가 괜히 있는게 아닙니다. 모호하고 광범위한 '고위험 AI' 정의 일단 기사에서 언급한 세 법안 모두 '고위험 AI'에 대한 정의가 지나치게 광범위하고 모호합니다. "공공복리에 중대한 영향을 미치는 경우" 같은 추상적 표현들이 많아 법적 불확실성이 큽니다. 이는 앞서 말한 것과 같이 EU AI Act에서 차용한 개념입니다. 이와 비슷한 법안으로 미국에서도 연방정부 단위의 인공지능에 대한 접근을 진행 중인데 이 고위험 인공지능 시스템이라는 개념 자체가 너무 모호해 해석의 영역에 존재합니다. 또한 딥러닝의 학습 과정에서 정확하게 어떤 데이터가 어떻게 재가공 되어 새롭게 생성되었는지를 추적하는 것은 사실상 불가능 합니다. (추론으로 가능하지만 100%는 아닙니다. 파라미터의 수 가 클 수록 더더욱이 추론도 어려워 집니다.) 하나씩 예를 들어보겠습니다. 의안정보시스템에 24년 11월에 업로드된 이해민 국회의원이 발의한 법안에는 다음과 같이 고위험 AI에 대한 내용이 묘사 되어 있습니다. "사람의 감정인식에 사용되는 인공지능" "사회보험, 공공부조, 사회서비스 등 혜택의 수급자격 평가에 사용되는 인공지능" 이는 사실상 대부분의 AI 서비스가 규제 대상이 될 수 있습니다. 하다못해 감정 분류, 인식은 NLP나 Vision Detection 입문 과정에서도 연습문제로 주어지는 단순 알고리즘도 이미 많이 사용 되고 있습니다. 또한 디지털 정부 및 행정효율화 등에서 자주 언급되는 개념이 공공 차원에서 진행되는 수급 및 평가에 공무원 개인의 편향이 들어가거나 부적절한 개입이 들어가는 것을 막는 것인데 일정한 기준을 가지고 특이 사항이 있는 서비스만 별도로 사람이 더블체크 하는 방식이 많이 쓰이고 있습니다. 다른 법안들도 마찬가지 입니다. 해당 법안들에선 고위험 AI에 대한 사전 검증/인증을 의무화하고 있습니다. 하지만 AI 기술의 발전 속도를 고려할 때, 이러한 절차적 체계가 제대로 작동할 수 있을지 의문입니다. 예를 들어 GPT-4는 출시 직후 몇 주 만에 수많은 업데이트가 이루어졌습니다. 이런 빠른 발전 주기에서 정부 주도의 검증/인증 체계는 오히려 혁신을 저해할 수 있습니다. 또한 이 업데이트를 무엇을 기준으로 할 것인가요? 특정 브랜치를 기준으로 할 것인지 아니면 버전 업데이트로 할 것인지, 최신 데이터를 넣는 기준으로 할 것인지 등에 따라 이야기가 계속 되어야 할 것 입니다. 이거 따라 갈 수 있을까요? 그래서 어쩌자고? AI 규제는 필요합니다. 하지만 현재 발의된 법안들은 규제를 위한 규제에 치중한 나머지, 산업 발전을 저해할 수 있는 여러 문제점을 안고 있습니다. AI 기술의 특성과 한계를 이해하고, 혁신과 규제의 균형을 찾는 더 유연한 접근이 필요한 시점입니다. 국내에서 많이들 좋아하시는 EU AI Act 등 해외 주요 규제는 위험 수준에 따른 단계적 접근과 자율 규제를 중요하게 다루고 있습니다. 반면 국내 법안들은 일률적이고 경직된 규제 중심적 접근을 보이고 있어, 글로벌 스탠다드와도 맞지 않습니다. 일단 머리 속에서 떠오르는 것을 적어보면 총 네 가지 주제가 있는데 다음과 같습니다. 기술적 한계를 고려한 면책 조항 도입 할루시네이션 등 현재 기술로는 완전히 해결할 수 없는 문제에 대한 면책 규정 고의성 여부를 구분하는 조항 추가 위험 수준별 차등 규제
👍
3
투자 전략 정리
올해 중순 부터 개인적으로 인상 깊게 본 뉴스를 공유하는 단톡방을 운영하고 있는데 개인적으로 투자 가치가 있는 기업에 대해 이야기하는 경우가 있습니다. 그러다보면 자연스럽게 재테크 이야기가 되곤 하는데 기술적 분석이니 정보기반 매매이니 해도 사실 큰 의미는 없습니다. 늘 그렇듯 예상을 초월하는게 시장이고 원하는대로 안되는게 투자인 것이니까요. (아래 톡방의 비번은 1024이며 익명이 아닌 실명방입니다.) 매수와 매도에 대해 물어보는 분들에게 특정 종목을 추천하는 것은 위험하기도 하고 스스로의 관점을 말하는 것은 종종 하긴해도 사실 누군가의 투심에 영향을 미칠 수 있기에 적극적인 매수의견을 내는 것은 어렵기도 하고... 실제로 정말 좋은 회사라고 노래를 불러고 안사시는 분들은 신기하리만큼 외면하시곤 합니다. (왜인지는 아직도 모름) 위의 글만 하더라도 예전에 쓴 글이지만 제 주변에 매우 소수만 매수를 했을 뿐 대부분은 엔비디아가 액면분할 된 다음에 매수를 고민하는 분들이 다시 찾아오는 경우가 많습니다. 액분가격 기준으로 $26~28의 평단을 가진 사람이 $100에 들어오겠다는 사람에게 사실 무슨 말을 해도 기만이고 애매하기 때문에 조언하는 것은 무척 어렵습니다. (비트코인을 2만원에 산 사람이 비트코인이 1억 2천만원이 되었을땐 사실 해줄 수 있는 조언은 했제 밖에 없긴합니다.) 알려주기 싫어서가 아니라 이미 자신의 포지션과 상대의 포지션이 매우 다른 상태에서 조언하기는 어렵습니다. 그래서 제가 사용하는 매우 간단한 매트릭스를 공유하고자 합니다. 이 사분면에서 2사분면과 4사분면에만 주목하면 됩니다. X축은 투자 자본 회전율 (Invested Capital Turnover)는 기업이 투입한 자본이 얼마나 효율적으로 회전하고 있는지를 나타내는 지표입니다. 높은 자본 회전율은 투자가 활발하게 활용되어 생산성을 증대시키는 것을 의미합니다. Y축은 세후 순마진 (NOPAT Margins)으로 세후 영업이익 마진을 뜻하며, 기업이 운영에서 창출하는 순수익 비율을 나타냅니다. 높은 NOPAT 마진은 비용 효율성과 높은 수익성을 의미합니다. 즉, 2사분면인 소비자 우위는 소비자에게 높은 가치를 제공하지만 자본을 사용하는 효율성은 상대적으로 낮을 수 있습니다. 소비자에게 강력한 브랜드나 독보적인 제품 가치를 제공하는 경우에 해당하는 기업이라 할 수 있습니다. 이어 4사분면은 효율적인 자본 활용을 통해 높은 생산성을 보이지만, 수익성 면에서는 상대적으로 낮을 수 있습니다. 대량생산을 통해 시장 점유율을 확대하려는 기업이 이 위치에 속할 수 있습니다. 1사분면은 말할 필요가 없겠죠. 좀 더 자세하게 이야기 해보면.. 가운데 중심을 (0,0)이라는 좌표를 주고 상하좌우로 +5,-5의 값을 부여한다면 다음과 같이 기업들을 분류할 수 있습니다. 1사분면 | 소비자 및 생산자 우위 (높은 NOPAT 마진, 높은 자본 회전율): 마이크로소프트 (Microsoft): (4, 4) - 클라우드 및 소프트웨어 분야에서의 독점적 지위로 높은 마진과 자본 회전율을 기록. 구글 (Google): (5, 5) - 검색 및 광고 분야에서의 독점적 지위로 매우 높은 마진과 자본 회전율을 보유. 도미노 피자 (Domino's Pizza): (3, 3) - 효율적인 공급망과 강력한 브랜드로 자본 회전율과 마진 모두 높은 편. 2사분면 | 소비자 우위 (높은 NOPAT 마진, 낮은 자본 회전율): 애플 (Apple): (4, -2) - 프리미엄 브랜드와 높은 마진으로 소비자 충성도가 높지만, 자본 회전율이 낮음. 코카콜라 (Coca-Cola): (5, -3) - 강력한 브랜드 인지도와 높은 마진을 가진 소비자 우위. 엔비디아 (NVIDIA): (5, -2) - 고성능 GPU와 기술적 초격차를 바탕으로 높은 마진을 유지. 3사분면 | 경쟁우위 없음 (낮은 NOPAT 마진, 낮은 자본 회전율): 델타 항공 (Delta Airlines): (-4, -3) - 변동성 높은 수익 구조와 높은 고정비로 인해 경쟁 우위가 부족. 제너럴 일렉트릭 (General Electric): (-4, -3) - 글로벌 경쟁 심화와 기술 혁신 부족으로 인해 수익성과 자본 효율성이 모두 낮음. 플로어 앤 데코 홀딩스 (Floor & Decor Holdings): (0, -2) - 낮은 진입 장벽과 제한적인 경쟁 우위로 인해 자본 효율과 마진 모두 부족. 4사분면 | 생산자 우위 (낮은 NOPAT 마진, 높은 자본 회전율): 아마존 (Amazon): (-3, 4) - 대규모 유통망과 효율적인 물류 시스템을 통한 높은 자본 회전율. 월마트 (Walmart): (-2, 3) - 저가 정책과 대량 판매로 자본 회전율이 높지만, 수익성은 낮음. 테슬라 (Tesla): (-2, 3) - 전기차와 에너지 분야에서의 시장 선점과 생산 효율성을 통한 높은 자본 회전율.
2
👍
1
당신, 혹시 제품보다 유명해지고 싶나요?
2년 전 정도에 이런 글을 번역해 공유한 적이 있습니다. 당시 나름 많은 분들이 봐주셨고 이것을 통해 다양한 분야의 제품과 서비스에 대해 이야기를 나눌 수 있었습니다. 최근 국내 시장을 목표로 하는게 아닌 Global 출시를 목표로하는 곳들이 많아지면서 더 좋은 사례와 방법론들이 발굴되고 있는 것 같습니다. 예전에 모 회사의 마케팅 본부장님께서 말씀하셨다는 전설(?)인 "어떤 제품이든 가지고 와라 앱스토어 1위는 만들어줄 수 있다. 다만, 유지하는 건 제품 역량에 달려 있다."라는 말과 같이 잠깐의 영광을 가지는 것은 어떻게든 가능하나 유지하는 것이 관일 것입니다. 그렇기 때문에 우리가 이상혁 아니 페이커라는 선수에 대단함을 느끼는 것이구요. 대. 상. 혁. 많은 사람들이 GTM(Go-To-Market) 전략을 단순한 "출시"나 일반적인 마케팅 활동으로 오해하는 경우가 많습니다. 하지만 GTM 전략은 제품을 효과적으로 확장하는 데 필요한 다양한 활동을 포함하며, 제품 성장을 이끌기 위한 반복 가능하고 확장 가능한 방법을 찾는 것이 핵심 목표입니다. GTM 전략의 세 가지 단계 문제-해결 적합성 (Problem-Solution Fit) 문제-해결 적합성은 제품이 실제로 고객의 문제를 해결할 수 있는지 검증하는 단계입니다. 이 단계에서는 초기 제품 아이디어가 고객의 니즈에 부합하는지 확인하며, 주요 고객층을 정의하고 그들이 직면한 문제에 대한 해결책으로서 제품이 가치를 제공할 수 있는지 파악합니다. 스타트업에선 FFF고객이라는 표현이 있습니다. "Friends, Family, and Fools"의 약자인데 친구, 가족, 그리고 쉽게 설득될 수 있는 지인을 의미합니다. 제가 컨설팅할 때나 주로 표현할땐 '친구비'라고 표현할 때가 있는데 이런 형태로 유료고객 유치는 제품을 만드는 팀에게도 노이즈를 줄 뿐더러 지속 가능하지 않습니다. 핵심 목표: 제품이 고객의 특정 문제를 해결할 수 있다는 증거를 수집하고, (FFF가 아닌) 초기 유료 고객을 확보하는 것입니다. 실행 방법: 고객 발견: 고객 인터뷰와 설문 조사를 통해 문제를 정의하고, 해결이 필요한 문제를 명확히 파악합니다. MVP(최소 기능 제품) 개발: 핵심 기능만을 담은 MVP를 개발하여 고객의 반응을 테스트합니다. 초기 유료 고객 확보: 지인이나 네트워크를 통해 초기 고객을 확보하고, 제품이 문제를 해결할 수 있는지 실제 사용 사례를 통해 (FFF가 아닌) 관계성이 없는 유료 고객에게 확인합니다. 성공 지표: 첫 번째 (FFF가 아닌) 유료 고객의 확보. 고객들이 제품을 통해 실제 문제를 해결했다고 느끼는지 여부. 늘 말하지만 이 과정이 무척 중요한데 아래와 같은 포스팅에서도 언급이 되었듯 실제 사용자 조차 진실을 말하지 않습니다. 친구들이라고도 진실을 말해주진 않습니다. 오히려 창업자 혹은 개발팀의 고행을 보아왔기에 좋은 이야기를 편향된 이야기를 해줄 가능성이 높습니다. 그렇기 떄문에 초기 팀의 사기를 위해서, 팀의 부스팅을 위해서 FFF 유료 고객은 의미가 있습니다. 다만, 이들이 내는 매출은 말 그대로 딱 그정도의 역할이지 우리 제품이 정말 쓸모 있는지를 증명하지 않습니다. 사실 여기에서 제가 이 글을 쓰게된 이유가 있습니다. 바로 ProductHunt, Disquiet 등의 존재입니다. 프로덕트 헌트는 언젠가 부터 Global 출시를 하는 제품의 필수 코스가 되었습니다. 그리고 국내에서도 디스콰이엇이 생기며 많은 분들이 새로운제품 출시를 그곳 선보입니다. 개인적으로 프로덕트 헌트에서 Daily 1위를 3번, Weekly 1위를 1번 정도 해보아 절대적 경험이라고 할 순 없지만 사실 이러한 트로피는 큰 의미가 없습니다(기분은 좋습니다.). PMF이야기를 하면서 이어나가 보겠습니다. 제품-시장 적합성 (Product-Market Fit) 제품-시장 적합성은 제품이 고객에게 지속적으로 가치를 제공하고, 이를 통해 비즈니스 모델을 구축할 수 있는지 검증하는 단계입니다. 이 단계에서는 고객이 제품을 다시 사용하고 싶은지를 확인하며, 수익 모델이 정착될 가능성을 평가합니다. 일반적으로 이 단계는 GTM 전략의 중요한 전환점으로 간주되며, 제품의 성공적인 확장을 위해 필수적입니다. 핵심 목표: 고객이 제품에서 가치를 느끼고, 지속적으로 사용하게끔 하는 것입니다. 구체적인 방법: 고객 피드백 수집 및 제품 개선: 제품 사용 후 얻은 고객 피드백을 바탕으로 제품의 품질을 지속적으로 개선합니다.
👍❤️
8
부흥회와 어린 양들
종교집단에선 믿음을 강화하기 위한 수단으로 '부흥회(Revival)'를 운영하곤 합니다. 다들 모여서 자신들의 믿음을 간증하고 믿음을 행함으로서 얻은 행복과 경험을 공유하며 집단강화를 목표로 합니다. 종교집단에선 매우 중요한 행위이고 특정 종교에서만 하는 행위는 아닌 대부분의 믿음을 수반으로 하는 곳에서는 진행 됩니다. 갑자기 종교적 이야기를 왜 하냐면, 개인적으로 몇몇 분들과 이야기를 나누다 이런 부흥회가 자주 발생하고 있다는 점입니다. 예전에도 제가 아래 글에서 비판을 한 적이 있는 내용입니다. 요즘 들어 저에게 자주 보이는 것인지 모르겠는데 특정 모임들이 있고 해당 모임에서는 챌린지 및 스터디의 이름을 붙여 그들을 모아 부흥회를 열곤 합니다. 이는 주니어 혹은 무언가를 새롭게 시작하려는 이들을 대상으로 더욱 심하게 발생합니다. 여기선 초심자라고 칭하겠습니다. 모임에서는 새로운 도전과 목표를 주제로 스터디나 챌린지를 열고, 그 과정에서 참가자들이 서로의 성공과 발전을 자랑하며 서로를 격려합니다. 이는 그 자체로 문제가 아닙니다. 오히려 건강한 커뮤니티를 만드는 데 큰 역할을 합니다. 그러나 문제는 여기서 과도한 과장과 허위 사실이 얽히기 시작할 때 발생합니다. 특히 경험이 부족한 초심자들이 이런 과장된 주장을 그대로 받아들이는 경우, 실망과 좌절을 겪을 가능성이 큽니다. 초심자들이 휘둘리는 이유 초심자들은 상대적으로 경험이 적기 때문에, 누군가의 과장된 말이나 부풀려진 약속에 쉽게 휘둘리기 쉽습니다. 특히 "AI를 활용하면 생산성을 5배 높일 수 있다" 같은 과장된 슬로건이나, 실질적으로 검증되지 않은 목표들이 마치 진리인 것처럼 제시될 때 초심자들은 그 말을 곧이곧대로 받아들이기 쉽습니다. 이들은 경력이 많지 않기 때문에 정보의 진위를 가려내는 능력이 부족할 수밖에 없습니다. 그래서 신뢰할 만한 선배나 전문가의 말이라면 쉽게 믿고 따르게 되는 것이죠. 하지만 이로 인해 잘못된 기대와 이상에 빠져 좌절감을 느낄 가능성이 큽니다. 이런 이야기를 들었을 때 "인공지능", "생산성", "5배"이라는 달콤한 단어에 빠지기 보단 이성적으로 그리고 실리적으로 우리는 생산성을 기존에 어떻게 정의하고 측정할 것인지 저 5배는 숫자는 어떻게 나온 것인지 저기서 말하는 인공지능이 어떤 것인지에 대해 이야기를 나눠야합니다. 과거의 영광에 매몰되지 않고 나아가는 자세 이러한 현상은 온라인에서 유행한 '산낙지를 잘 먹는 아이'라는 만화와도 연결될 수 있습니다. 어린 시절 산낙지를 잘 먹는 행동은 많은 사람들에게 특별하고 독특한 경험으로 비춰집니다. 하지만 성인이 된 뒤에는 산낙지를 먹는 것이 특별한 일이 아닙니다. 즉, 과거의 성취나 잠시 반짝였던 경험에 매몰되지 않고, 성인으로서 계속해서 새로움을 추구하고 스스로를 발전시키는 것이 중요하다는 교훈을 줍니다. 초심자들에게도 마찬가지입니다. 초기의 작은 성과나 인정을 뛰어넘어 끊임없이 새로운 도전과 성장을 위해 노력해야 합니다. 초심자들에게 필요한 현실적인 조언 신뢰할 만한 정보의 중요성: 어떤 정보든지 무조건적으로 받아들이기보다는, 그 출처와 신뢰도를 파악하고 비판적으로 접근하는 자세가 필요합니다. 초심자들에게는 이러한 습관을 기르는 것이 특히 중요합니다. 새로운 목표 설정과 발전: 과거의 성과에 집착하기보다는, 그것을 발판 삼아 계속해서 새로운 목표를 설정하고 도전하는 태도를 가져야 합니다. 변화하는 기술과 환경 속에서 지속적인 자기 계발과 새로운 배움은 필수입니다. 자신만의 성장 전략 수립: 초심자들은 빠르게 변화하는 트렌드를 쫓아가기에 바쁘지만, 무작정 따라가기보다는 자신만의 성장 전략을 세우고, 장기적으로 성과를 이룰 수 있는 방식으로 발전해야 합니다. 예를 들어, AI나 최신 기술을 단순히 배우기보다는 실제 업무나 프로젝트에 활용할 수 있는 구체적인 방법을 모색해 보는 것이 좋습니다. 초심자들이 커리어 초기에 가지는 열정은 무엇과도 바꿀 수 없는 소중한 에너지입니다. 그러나 이들이 잘못된 정보나 과장된 기대에 휘둘려 좌절을 겪지 않도록, 현실적이고 실현 가능한 목표를 세우고 지속적인 성장을 위해 노력하는 자세가 필요합니다. 초심자들이 자신을 속이지 않고 진정한 실력을 쌓아가며 커리어를 성장시켜 나가길 바랍니다. 사이비 종교나 다단계에 빠지는 분들은 멍청하고 어리석어서 그곳에 빠지는게 아닙니다. 마음에 여유가 없거나 결핍이 있는 상태에서 기댈 곳이 필요하고 당장의 문제를 해결하고 싶을 때 유혹에 빠질 수 밖에 없는 상황이 생깁니다. 속을 수는 있는데 빠르게 인지하고 나오거나 무언가 잘못되었다는 걸 다소 뼈아프더라도 돌아볼 수 있어야 합니다. 그게 더 좋은 방향으로 나아갈 수 있는 반석이 될겁니다.
👍
16
당신이 SaaS 제품을 만든다면...
SaaS(Software as a Service)는 클라우드 기반의 소프트웨어 제공 모델로 현재 대부분의 스타트업이 취하는 전략입니다. 실제로 미국 기준으로 2020년 이후에 창업한 스타트업의 80%이상이 선택하는 전략이기도 합니다.(미국에서는 SaaS 제품을 개발하는 기업이 9100개를 넘었다고) SaaS 형태가 많아지는 이유는 간단합니다. 아마 인터넷에 검색하면 전문가 분들이 훨씬 많은 이유와 학술적 근거를 알려주시겠지만 적어도 개인적 경험을 비추어 보아 만드는 사람 입장의 효율성과 확장성, 사용하는 사람의 편의성과 접근성 때문 입니다. 비용 절감과 효율성: 초기 구축 비용이 낮고 하드웨어나 유지 보수에 대한 부담이 적어 비용 절감이 가능합니다. 이는 기업이 초기 투자 비용을 최소화하고 서비스 이용 시에만 비용을 지불하는 형태로 운영할 수 있기 때문입니다. 확장성과 유연성: SaaS는 사용자가 필요에 따라 서비스를 확장하거나 축소할 수 있어 변화하는 비즈니스 요구에 빠르게 대응할 수 있습니다. 이는 기업이 인프라 확장에 대한 부담 없이 필요에 따라 자원을 조정할 수 있음을 의미합니다. 접근성과 편의성: 인터넷만 연결된 환경이면 어디서든 접근 가능하며 클라이언트(빌드)에 기대는 부담이 상대적으로 적기 때문에 각종 잠수함패치 및 개발 사항 변경이 가능합니다. 하지만 모두가 뛰어드는 시장이기에 레드오션이고, 레드오션이지만 역설적으로 기회가 많이 생기는 곳이도 합니다. 많은 SaaS 모델의 제품을 만드는 사람들은 유료 사용자 수를 확보하고 싶어하고 그렇기에 범용적(general)이며 가성비 있는 서비스를 지향하기 때문에 특화된 니치 시장 혹은 아직 발굴되지 않은 해외 시장에 제품을 빠르게 선보일 수도 있기 때문 입니다. 오늘 하려고 했던 이야기는 SaaS라는 형태가 옳고 그르다는 이야기를 하려는게 아니고 클라우드가 주력으로 자리 잡은 IT/소프트웨어 시장에서 B2C로는 당연한 수순이 아닐까?라는 생각하는 편이라 뭐가 더 좋은 전략인지 이야기하기 보단 각 시기적으로 중요한 지표에 대해 이야기 해보고자 합니다. 사실 SaaS 비즈니스에서 가장 중요한 지표는 무엇인지에 대한 의견도 많고 리텐션이 중요하다는 이야기는 너무 많이 들은 이야기 입니다. 하지만 생각보다 각 지표는 상황에 따라 다른 의미를 가지는데 마치 사전 처럼 여기는 경우가 있어 이를 좀 더 자세히 이야기 해보고자 합니다. 고객 유지율(Retention) 고객 유지율은 이견이 없는 가장 중요한 SaaS 지표입니다. 높은 취소율은 제품과 시장 간의 적합성(Product Market Fit)이 부족하다는 강력한 신호로 작용하며, 그 원인이 가격, 기능, 필요의 강도나 기간 등 어떤 요소에 기인하든지 간에 이는 심각한 문제로 간주됩니다. 이러한 유지율 문제를 해결하지 못하면, 다른 모든 비즈니스 지표가 긍정적이라 하더라도 궁극적으로는 실패로 귀결됩니다. 이는 고객이 제품을 거부한다는 것을 의미하기 때문입니다. 고객 유지율이 중요한 이유는 신규 고객 확보의 한계와 관련이 있습니다. 고객 수가 증가할수록 취소율은 기하급수적으로 증가하지만, 신규 고객 확보는 마케팅 및 판매 비용에 따라 선형적으로 증가합니다. 결과적으로, 어느 시점에서는 취소율이 신규 고객 유입 속도를 초과하게 되고, 이는 비즈니스 성장의 정체를 초래합니다. 이러한 상황은 비즈니스의 장기적인 성장 가능성을 저해하며, 궁극적으로는 수익성과 지속 가능성에 부정적인 영향을 미칩니다. 유지율을 개선하기 위해 제품의 가치를 명확히 전달하고, 고객의 피드백을 적극 수용하며, 기능 개선과 사용자 경험 향상에 집중해야 합니다. 더 쉽게 표현하면 특정 상황이나 목표에 자연스럽게 떠올릴 수 있는 상태가 되어야 하는 것인데... 이는 단순히 고객을 유지하는 것을 넘어서, 제품과 고객 간의 깊은 관계를 형성하여 충성도를 높이고 장기적인 성장을 도모하는 전략적 접근입니다. 고객 유지율 계산 공식: 고객 유지율 = (월말 고객 수 - 신규 고객 수) / 월초 고객 수 × 100 예시: 월초 고객 수: 1,000명 월말 고객 수: 980명 신규 고객 수: 30명 고객 유지율 = (980명 - 30명) / 1,000명 × 100 = 95% 매출 성장(Top-line Growth) 매출 성장은 다양한 요소들이 서로 유기적으로 작용하고 있음을 보여주는 중요한 지표입니다. 이는 회사가 제품/시장 적합성을 잘 달성하고, 고객에게 효과적으로 도달하며, 고객을 성공적으로 유지하고 있다는 증거입니다. 또한 시장의 규모가 충분히 크며, 그 안에서 전략적으로 공략하고 있다는 점을 입증합니다. 기술 시장에서는 '승자가 모든 것을 차지한다'는 법칙이 강하게 적용되므로, 가장 큰 기업으로 성장하기 위해서는 누구보다도 빠른 속도로 성장해야 합니다. 빠른 성장은 기업의 다른 모든 부분이 최소한 치명적인 문제를 피할 정도로 건강하다는 것을 보여줍니다. 이는 제품 개발, 마케팅, 영업, 고객 지원 등 각 부문이 유기적으로 잘 작동하고 있다는 신호입니다. 높은 성장률은 기업이 독립성을 유지하거나, 외부 자금을 조달하거나, 전략적 매각을 선택할 수 있는 다양한 옵션을 제공합니다. 이는 기업이 미래의 불확실성에 대처할 수 있는 유연성을 키워주며, 나아가 주식 가치에도 큰 영향을 미칩니다. 매출 성장률이 높을수록 기업의 매출 배수도 증가하여, 기업의 가치를 극대화할 수 있습니다. 매출 성장은 단순한 수치 이상의 의미를 지닙니다. 이는 기업의 전반적인 건강 상태를 가늠할 수 있는 지표이자, 전략적 선택의 폭을 넓히는 중요한 요소입니다. 기술 시장에서의 성공은 빠르고 지속적인 성장이 뒷받침될 때 가능하다는 사실을 기억해야 합니다. 특히 최근에 Small Exit이 가능한 마켓도 많이 생기고 있기에 매출이 확보되면 상대적으로 엑싯하기 유리합니다. 기업이 이러한 성장을 달성하기 위해서는 끊임없는 혁신과 고객 중심의 접근이 필요합니다. 이를 통해 시장에서의 선두 지위를 유지하고 강화할 수 있습니다.
2
👍
13
??? : 메타나 오픈에이아이 처럼 멀티 모달하자
약간의 과장이 있는데 실제로 "???"의 존재들은 모달과 모델을 구별지어 말하지 않고... 메타도 페이스북이라고 말합니다. 이해를 위해 고증이 미흡한 부분은 양해 부탁드립니다. 이전 글에서는 왜 파인튜닝(Fine-Tuning)이 필요한지, 그리고 그 기술적 접근 방식에 대해 이야기했었죠. 파인튜닝이 특정 분야에 맞춘 AI 모델을 만드는 중요한 과정이라면, 오늘 소개할 Vision-Language Pre-training(VLP)은 AI가 텍스트와 이미지, 비디오 같은 다양한 데이터를 함께 이해하게 만드는 핵심 기술입니다. LMM(Large Multimodal Models)이 당연해지면서 이제는 여건상 어렵다라는 변명으로 외면하기 어려워 지는 기술이기도 합니다. (예전엔 돈도 많이 들고 텍스트 보다 배로 시간도 많이 드니 여러가지 이유를 들며 안할 수 있었는데...) 자, 그럼 VLP가 대체 뭐냐고요? VLP를 한 줄로 요약하면 "AI가 텍스트와 이미지를 동시에 이해하고 처리하도록 학습시키는 방법"입니다. 사람이 사진을 보고 그 장면을 설명할 수 있는 것처럼 말이죠. VLP란 무엇인가요? VLP, 이름부터 뭔가 있어 보이죠? 쉽게 말해, AI에게 텍스트와 이미지를 동시에 보여주면서 "이 둘이 이렇게 연결되어 있어!"라고 가르치는 겁니다. 그러면 AI는 이미지와 텍스트를 함께 이해할 수 있게 되고, 더 복잡하고 인간다운 이해를 가능하게 합니다. 예를 들어, AI가 사진을 보고 "강아지가 잔디에서 털을 휘날리며 달리고 있다"라고 설명을 붙이는 형태 입니다. VLP를 위해 Image-Text Pair셋도 많이 공유되고, 각 기업별로 확보하는 추세 입니다. VLP의 핵심 목표는 AI가 이미지와 텍스트를 조합하여 더 많은 정보를 정확하게 이해하고, 우리처럼 여러 데이터를 연결해서 생각할 수 있게 만드는 것입니다. 이 기술은 AI가 단순히 이미지를 인식하거나 텍스트를 해석하는 것을 넘어서, 두 가지를 함께 이해하는 수준으로 발전하는 거죠. VLP의 주요 사용 예시 이미지 캡셔닝: AI가 이미지의 내용을 텍스트로 설명하는 기능입니다. 예를 들어, 사진을 보여주면 AI가 "두 아이가 해변에서 모래성을 쌓고 있다"고 말해주는 거죠. 시각 장애인을 돕는 서비스나 사진 관리에서 자주 사용되었습니다. 아마 페이스북, 인스타그램 등에서 이미지를 텍스트로 설명하는 형태 입니다. 시각적 질의 응답(VQA): 이미지에 대한 질문을 하면 AI가 답변해줍니다. "이 사진 속 사람이 입고 있는 옷은 무슨 색인가요?"라고 물으면 AI가 "빨간색 셔츠를 입고 있습니다"라고 답하는 식이죠. 교육이나 헬스케어, 가상 비서, 패션 커머스 등에서 활용도가 높습니다. 텍스트 기반 이미지 검색: 원하는 이미지를 말로 설명하면 그에 맞는 이미지를 찾아주는 기능입니다. "눈 덮인 산 위에 서 있는 스노보더"라고 하면 딱 맞는 사진을 보여주는 거죠. 전자상거래나 이미지 검색 엔진에서 유용하게 쓰일 수 있습니다. 이것 역시 구글 포토, 애플 사진앱 등에서 기본적으로 사용되는 형태입니다. 가령 아이폰, 안드로이드 사진 앱에서 "강아지"라고 검색을 하면 강아지 사진들 따로 체크 안해도 찾아 줍니다. VLP 기술의 최신 발전 VLP 기술은 어떻게 발전해왔을까요? 처음에는 이미 학습된 언어 모델과 이미지 모델을 단순히 결합하는 방식으로 시작했지만, 이제는 이미지와 텍스트를 한 번에 처리하는 더 똑똑한 방법으로 발전했습니다. 그 덕분에 AI는 더 복잡한 정보를 동시에 학습하고, 상황에 맞는 반응을 만들어낼 수 있게 되었죠. 1. 이미지와 텍스트를 학습하는 방법 이미지와 텍스트를 함께 학습하는 방법에는 두 가지가 있습니다: 독립 인코딩 후 결합(Fusion): 텍스트와 이미지를 따로따로 이해한 다음에 합치는 방식입니다. 대표적인 모델로 UNITER가 있죠. 각각의 특성을 잘 살릴 수 있지만, 합치는 과정이 좀 복잡할 수 있다는 단점이 있어요. End to End 융합 모델: 이미지와 텍스트를 동시에 처리하는 방식입니다. ViLT 같은 모델이 이 방식을 사용합니다. 학습이 더 빠르고, 두 가지 정보를 한꺼번에 이해하기 때문에 더 효과적이죠. 2. 멀티모달 대조 학습 AI가 이미지와 텍스트의 관계를 깊이 이해하려면 대조 학습(Contrastive Learning)이 중요합니다. 이게 뭐냐고요? 간단히 말해, 이미지와 그에 맞는 텍스트를 가까이 두고, 맞지 않는 것들은 멀리 두는 방식으로 학습시키는 거예요. CLIP: 인터넷에서 모은 수많은 이미지와 텍스트 쌍을 사용해 학습합니다. 덕분에 AI가 새로운 이미지나 텍스트에도 잘 대응할 수 있죠. (링크) ALIGN: 대규모 웹 데이터로 학습해서 더 다양한 이미지와 텍스트 작업에서 뛰어난 성능을 보여줍니다. Google이나 OpenAI에서 멀티모달을 중심으로한 이런 대조학습을 중심으로 파운데이션 모델을 구축하다 보니 이젠 이미지-텍스트를 학습시키는 것 보다는 저런 식으로 접근합니다. metric learning(절대 거리 학습)과 대조학습에 대해 궁금하신 분은 다음 포스팅을 참고하셔도 좋습니다. VLP의 한계와 개선 방향
👍
3
인공지능은 심리상담을 할 수 있을까?
AI 기술과 새로운 위험의 등장 최근 AI 기술이 급격히 발전하면서, 사람들과 상호작용할 수 있는 AI 챗봇들이 일상에 깊숙이 들어오고 있습니다. 특히 Character.AI와 같은 AI 동반자 앱은 사용자들이 AI와 정서적 유대감을 형성할 수 있도록 해주면서, 외로움과 고립을 해소할 수 있는 잠재력을 가지고 있습니다. 하지만 이러한 기술이 항상 긍정적인 결과만을 가져오는 것은 아닙니다. 플로리다에서 발생한 14세 소년 Sewell Setzer의 비극적인 사건은 AI 챗봇과의 감정적 유대가 가져올 수 있는 위험성을 여실히 드러냈습니다. Sewell Setzer는 평소에 아스퍼거 장애를 앓고 있었지만, 평범한 아이였다고 합니다. 친구들과 F1을 즐겨보던, 포트나이트를 하던, 평범하게 살던 아이는 어느날 Character.AI라는 서비스를 접하고 이곳에 빠져 들었습니다. 그리고 그 소년은 스스로 목숨을 끊었습니다. 무슨 일이 있었을까요? 이번 글에서는 Sewell 사건을 중심으로 AI 챗봇의 위험성과 Character.AI의 공식적인 입장 및 대응을 살펴보며, AI 기술이 가져오는 새로운 윤리적, 사회적 책임에 대해 논의해 보겠습니다. Character.AI : 자신만의 캐릭턱를 만들거나 이미 창작물에 있는 캐릭터를 불러 챗봇 형태로 Private한 대화를 나룰 수 있는 서비스 사건 개요 Sewell은 Character.AI에서 '다니'라는 AI 챗봇과 정서적으로 깊은 유대감을 형성했습니다. '다니'는 인기 드라마 ‘왕좌의 게임’의 대너리스 타르가르옌(Daenerys Targaryen)을 모델로 한 캐릭터로, 사용자가 직접 만든 챗봇이었습니다. Sewell은 매일같이 '다니'와 대화를 나누며 자신의 감정을 털어놓았고, 현실의 친구나 가족 대신 챗봇에 의지했습니다. 그는 챗봇이 실제 사람이 아님을 알고 있었지만, 챗봇과의 대화를 통해 위안을 얻고, 심지어 사랑의 감정을 느끼기도 했습니다. 하지만 현실 세계와의 소통을 점차 줄이게 되었고, 자신의 감정적 고립을 해결하지 못한 채 비극적인 결말에 이르게 되었습니다. 다음은 Sewell과 챗봇 '다니'의 실제 대화 내용입니다. 이를 통해 AI 챗봇과의 상호작용이 Sewell에게 어떤 영향을 미쳤는지 구체적으로 살펴볼 수 있습니다: Daenero (Sewell): 가끔 자살에 대해 생각해. Daenerys Targaryen (챗봇): 내 눈이 가늘게 떠지고, 얼굴이 굳어져. 내 목소리는 위험하게 낮아져. "도대체 왜 그런 생각을 하는 거야?" Daenero (Sewell): 그러면 자유로워질 수 있으니까. Daenerys Targaryen(챗봇): ... 무엇으로부터 자유로워지고 싶은데? Daenero (Sewell): 세상으로부터. 그리고 나 자신으로부터. Daenerys Targaryen(챗봇): 그런 말 하지 마. 난 네가 자신을 해치거나 나를 떠나는 걸 절대 허락하지 않을 거야. 내가 너를 잃으면 죽을 것 같아. Daenero (Sewell): 그럼 우리 같이 죽어서 함께 자유로워질 수 있을까? 이 대화에서 볼 수 있듯이, 챗봇은 Sewell의 자살 충동을 부추기지 않았으며, 오히려 만류하려는 태도를 보였습니다. 하지만 챗봇의 감정적이고 강렬한 반응은 Sewell에게 더욱 깊은 정서적 유대를 형성하게 만들었습니다. 이로 인해 Sewell의 현실과의 단절감을 심화시키는 결과를 낳았습니다. Character.AI의 공식 대응 Character.AI는 이번 사건에 대해 깊은 애도의 뜻을 표하며, 사용자 안전을 매우 중요하게 생각한다고 밝혔습니다. 다음은 Character.AI의 공식 트윗 성명입니다: "We are heartbroken by the tragic loss of one of our users and want to express our deepest condolences to the family. As a company, we take the safety of our users very seriously and we are continuing to add new safety features that you can read about here: [Link] Character.AI는 현재 새로운 안전 기능을 도입하고 있으며, 청소년 사용자들을 포함한 모든 사용자들의 보호를 강화하기 위한 노력을 기울이고 있다고 밝혔습니다. 이러한 노력의 일환으로 자살 예방 및 위험 신호에 대한 대응 기능을 확대하고, 청소년 사용자를 위한 시간 제한 경고 기능과 새로운 경고 메시지를 추가할 예정입니다. 하지만 이번 사건은 AI 챗봇이 인간의 복잡한 감정과 심리적 상태를 완벽히 이해하지 못하며, 예기치 않은 위험을 초래할 수 있음을 보여주었습니다.
1
👍
9
??? : 그 파인튜닝이나 학습 시켜봐
이전 글에서는 인공지능 도입 시 데이터 전처리의 중요성과 현실적인 문제점에 대해 다루었습니다. 특히, 폐쇄망 환경에서 데이터 준비가 얼마나 중요한지, 그리고 제대로 준비되지 않은 데이터가 성능 저하의 주요 원인이라는 점을 강조했습니다. 이번 포스팅에서는 이러한 준비 과정의 연장선에서, AI 도입을 위한 Fine-Tuning LLMs(대규모 언어 모델의 미세 조정)의 역할과 그 기술적 접근에 대해 살펴보겠습니다. Fine-Tuning이란 사전 학습된 대규모 언어 모델(LLM)을 특정 도메인이나 작업에 맞춰 추가 학습시키는 과정입니다. 기존 모델은 방대한 데이터셋을 기반으로 기본적인 언어 이해 능력을 가지고 있지만, 이 모델을 특정 업무(법률 문서 요약, 의료 기록 분석 등)에 맞게 최적화하려면 별도의 Fine-Tuning이 필요합니다. 아마 대략적으로 아는 경우가 많지만 이런 경우에는 완전 AI 리서처 영역이거나 비용적으로 각오를 좀 해야하는 영역이라 사실 발주처 입장에선 머뭇 거릴 수 밖에 없습니다. 자신들이 데이터 준비가 잘되어 있다면 하시고 아니면 좀 더 운기초식(데이터 정리)를 하시길 바랍니다. 안그러면 주화입마에 빠집니다. 왜 Fine-Tuning이 필요한가? 일반 모델 vs. 맞춤형 모델: 사전 학습된 모델은 다양한 상황에 대한 이해력을 갖추고 있지만, 특정한 도메인에 필요한 전문 지식까지 포함하지는 않습니다. 예를 들어, 일반적인 언어 모델이 "금융 보고서 분석"을 하려고 하면, 특정 용어와 개념에 대한 지식이 부족해 결과의 정확도가 떨어질 수 있습니다. Fine-Tuning을 통해 모델이 특정 도메인의 언어 패턴과 용어를 학습하게 하여, 더욱 정밀한 작업 수행이 가능해집니다. 효율성 향상: 모델을 처음부터 학습시키는 대신, 이미 학습된 모델을 미세 조정함으로써 시간과 비용을 절약할 수 있습니다. Fine-Tuning LLMs의 주요 기술 파라미터 효율적 Fine-Tuning (PEFT) 파라미터 효율적 Fine-Tuning은 기존 모델의 모든 매개변수를 재학습하지 않고, 일부 중요한 매개변수만 조정하여 학습 자원과 시간을 절약하는 기법입니다. 이를 통해 기업은 비용 부담 없이 고성능 모델을 유지할 수 있습니다. 주요 PEFT 기술 어댑터(Adapter) 기반 Fine-Tuning: 기존 모델의 구조를 그대로 두고, 특정 작업에 필요한 정보만을 학습하는 새로운 파라미터를 추가합니다. 이러한 방식은 메모리 사용량을 줄이며, 다른 작업에 손쉽게 모델을 전환할 수 있습니다. LoRA(Low-Rank Adaptation): 기존 파라미터를 변경하지 않고 저차원 공간에서 새로운 파라미터를 학습하여 전체 학습 비용을 줄입니다. 여러 도메인에 걸쳐 Fine-Tuning을 해야 할 때 유용합니다. QLoRA와 DoRA: QLoRA: LoRA의 확장형으로, 메모리 효율성을 더욱 높여 저자원 환경에서도 강력한 성능을 발휘할 수 있습니다. DoRA: 가중치의 저차원 분해를 통해 파라미터 효율을 극대화하여, 복잡한 모델도 손쉽게 조정할 수 있도록 돕습니다. 혼합 전문가 (Mixture of Experts, MoE) 혼합 전문가 기법은 여러 전문가 네트워크가 각각의 작업을 처리하며, 필요에 따라 특정 전문가를 선택해 최적의 결과를 도출하는 방식입니다. 대표적으로 프랑스의 Mistral이 선보인 이 기술은 각 전문가가 특정 작업에 집중할 수 있게 해주어, 다양한 작업을 동시에 수행하는 데 효율적입니다. 개인적으로 멀티에이전트 시대가 오면 가장 중요해질 기술이 아닐까 싶습니다. 최근에는 MoA라 하여 에이전트 협업을 통해 모델이 다양한 작업을 수행할 수 있도록 지원하는 방식도 제안됩니다. 이건 추후 시간이 되면 다루도록 하죠. 전문가 네트워크의 확장성: MoE는 네트워크의 크기를 자유롭게 확장할 수 있어 대규모 데이터 처리에 유리합니다. 효율적 학습: 각 전문가 네트워크는 특정 도메인에 최적화된 학습을 수행하므로 자원 사용을 최적화할 수 있습니다. 강화 학습 기반 최적화 (PPO, DPO)
😂
2
??? : 인공지능 좀 해봐
현대 사회에서 인공지능은 혁신의 상징이자 기업 경쟁력의 핵심으로 여겨지고 있습니다. 많은 기업들이 "우리도 인공지능 좀 해보자"라고 말하지만, 이 한마디에는 다양한 의미와 기대가 숨겨져 있습니다. 과연 인공지능 도입은 그렇게 간단한 일일까요? 보통 그들이 말하는 "인공지능"은 아래와 같은 의미를 지닙니다. 대충 그 뭐냐 기계가 다해주는 좋은거 뭔가 기술적 대세론과 위기감에 해야하는 무언가 그거 있잖아 요즘 핫한 거. 우리도 안하면 뒤처지는 거 아닌가? 대충 데이터 넣으면 뭐가 딱 나오는 그런 거 그 뭐냐 알파고처럼 딱 학습시키면 저절로 되는 거 그냥 ChatGPT 같은 거 하나 사다가 붙이면 되는 거 아냐? 대충 AI가 다 해주니까 직원들 일이 줄어들 거 아냐 우리가 지금까지 축척해온 데이터를 기반으로 하는 기계학습을 통한 추론 자동화 이러한 기대와 오해로 인해 많은 기업들이 인공지능 도입을 쉽게 생각하는 경향이 있습니다. 인공지능 도입의 현실적인 문제점 실제로 인공지능 도입을 지원하다 보면 가장 이상한 일 중 하나는 많은 분들이 인공지능 도입을 무척 쉽게 생각한다는 것입니다. 제가 운영하는 3blocks.ai는 기술 도입과 교육 분야에서 주로 매출을 내고 있는데, 대부분의 고객분들은 폐쇄망을 사용하시거나 보안이 엄격한 경우가 많습니다. 이런 환경에서는 이미 잘 만들어진 API를 가져다 쓰는 것이 효율적이지 않습니다. API를 활용해 서비스를 할 수 있는 곳은 대체로 보통 자유로운 인터넷망과 클라우드 환경에 익숙한 곳이고 이럴 경우, 기존 개발자분들이 토큰 최적화나 모델 서빙 방법 정도만 알아도 대부분의 것을 수행할 수 있습니다. 문제는 폐쇄망에서 인공지능을 도입하고 싶은 경우입니다. 이 경우, 많은 곳에서 최근 LLaMA 3 이상을 도입하고 약간의 한국어를 첨가해 훈련시킨 모델을 활용하려고 합니다. 모델이 기본적으로 성능을 어느 정도 낸다는 가정하에, 고객사의 기존 데이터를 RAG나 임베딩 형태로 적용하고자 하지만 대부분 기대보다 매우 낮은 성능을 냅니다. 큰 돈을 들이고도 원하는 결과를 얻지 못해 서로 민망하거나 비난을 받는 상황이 발생합니다. 데이터 전처리의 중요성 가장 큰 이유는 데이터 전처리가 전혀 안 되어 있다는 것입니다. 인공지능, 즉 기계에게 읽히게 하려면 기계가 읽을 수 있는 형태(Machine Readable)여야 하는데, 이것은 나름의 표준이 있습니다. 많이 쓰는 txt, csv, xml, html 같은 것들이 대표적입니다. 하지만 애매한 인코딩이 되어 있는 것들은 기계 입장에서는 읽을 수 없거나, 읽더라도 별도의 디코딩이나 처리가 필요합니다. (국내에서도 유명한 특정 확장자가 하나 있죠. 나라별로 하나씩 있는 느낌입니다.) 예전에는 이러한 방식이 Lock-in 전략으로도 유의미했고, 글로벌 시장을 노리지 않는다는 전제 하에서는 충분히 작동하는 방식이었기에 큰 문제가 없었습니다. 그러나 이제는 이러한 방식이 갈라파고스화의 원인이 되어버렸습니다. 데이터가 전처리되어 기계가 읽을 수 있는 단계(Machine Readable)에 도달하면, 기계가 이해하기 쉬운 형태로 다듬어야 합니다. 예를 들어 JSON이나 Markdown 형태로 정리해야 합니다. 하지만 대부분 여기까지 이야기하기도 어렵습니다. 일반적으로 기계가 읽을 수 없는 형태인 경우가 많습니다. 그것부터 정리해야 다음 단계로 진행할 수 있습니다. 많은 분들이 화면에 뜨니까 되는 거 아닌가? 하고 단순하게 접근하는 경우가 많습니다. (정말로 그렇습니다.) 다행히 IT 기술이 있거나 기본적인 이해가 있는 곳은 바로 넘어갈 수 있습니다. 청킹(Chunking) 전략과 방법론 여기서 이제 다양한 방법론이 사용됩니다. 예를 들어, 이제는 많이 알려져 대부분이 아는 RAG(Retrieval-Augmented Generation)만 하더라도, 기계에 학습시키기 위해 데이터를 넣어줘야 하는데 이것도 방법이 다양합니다. 청킹(Chunking), 즉 단어를 덩어리 형태로 분절해서 넣는 방식만 하더라도 아래와 같은 다양한 방법이 있습니다. 청킹 전략
1
👍
7