Daily Arxiv

This is a page that curates AI-related papers published worldwide.
All content here is summarized using Google Gemini and operated on a non-profit basis.
Copyright for each paper belongs to the authors and their institutions; please make sure to credit the source when sharing.

Llama-Nemotron: Efficient Reasoning Models

Created by
  • Haebom

Author

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil, Zach Moshe, Tomer Ronen, Najeeb Nabwani, Ido Shahaf, Oren Tropp, Ehud Karpas, Ran Zilberstein, Jiaqi Zeng, Soumye Singhal, Alexander Bukharin, Yian Zhang, Tugrul Konuk, Gerald Shen, Ameya Sunil Mahabaleshwarkar, Bilal Kartal, Yoshi Suhara, Olivier Delalleau, Zijia Chen, Zhilin Wang, David Mosallanezhad, Adi Renduchintala, Haifeng Qian, Dima Rekesh, Fei Jia, Somshubra Majumdar, Vahid Noroozi, Wasi Uddin Ahmad, Sean Narenthiran, Aleksander Ficek, Mehrzad Samadi, Jocelyn Huang, Siddhartha Jain, Igor Gitman, Ivan Moshkov, Wei Du, Shubham Toshniwal, George Armstrong, Branislav Kisacanin, Matvei Novikov, Daria Gitman, Evelina Bakhturina, Prasoon Varshney, Makesh Narsimhan, Jane Polak Scowcroft, John Kamalu, Dan Su, Kezhi Kong, Markus Kliegl, Rabeeh Karimi Mahabadi, Ying Lin, Sanjeev Satheesh, Jupinder Parmar, Pritam Gundecha, Brandon Norick, Joseph Jennings, Shrimai Prabhumoye, Syeda Nahida Akter, Mostofa Patwary, Abhinav Khattar, Deepak Narayanan, Roger Waleffe, Jimmy Zhang, Bor-Yiing Su, Guyue Huang, Terry Kong, Parth Chadha, Sahil Jain, Christine Harvey, Elad Segal, Jining Huang, Sergey Kashirsky, Robert McQueen, Izzy Putterman, George Lam, Arun Venkatesan, Sherry Wu, Vinh Nguyen, Manoj Kilaru, Andrew Wang, Anna Warno, Abhilash Somasamudramath, Sandip Bhaskar, Maka Dong, Nave Assaf, Shahar Mor, Omer Ullman Argov, Scot Junkin, Oleksandr Romanenko, Pedro Larroy, Monika Katariya, Marco Rovinelli, Viji Balas, Nicholas Edelman, Anahita Bhiwandiwalla, Muthu Subramaniam, Smita Ithape, Karthik Ramamoorthy, Yuting Wu, Suguna Varshini Velury, Omri Almog, Joyjit Daw, Denys Fridman, Erick Galinkin, Michael Evans, Shaona Ghosh, Katherine Luna, Leon Derczynski, Nikki Pope, Eileen Long, Seth Schneider, Guillermo Siman, Tomasz Grzegorzek, Pablo Ribalta, Monika Katariya, Chris Alexiuk, Joey Conway, Trisha Saar, Ann Guan, Krzysztof Pawelec, Shyamala Prayaga, Oleksii Kuchaiev, Boris Ginsburg, Oluwatobi Olabiyi, Kari Briski, Jonathan Cohen, Bryan Catanzaro, Jonah Alben, Yonatan Geifman, Eric Chung

Outline

The Llama-Nemotron series is an open-source heterogeneous inference model that offers superior inference performance, efficient inference speed, and an open license that allows commercial use. Available in three sizes—Nano (8B), Super (49B), and Ultra (253B)—it delivers superior inference throughput and memory efficiency, while being competitive with state-of-the-art inference models such as DeepSeek-R1. It utilizes accelerated inference using neural architecture search (NAS) of the Llama 3 model, knowledge distillation, and additional pre-training, followed by an inference-driven additional training phase consisting of supervised learning fine-tuning and large-scale reinforcement learning. It is also the first open-source model to support dynamic inference toggling, allowing users to switch between standard chat mode and inference mode during inference. We are releasing the LN-Nano, LN-Super, and LN-Ultra models, additional training datasets, and the training codebases for NeMo, NeMo-Aligner, and Megatron-LM.

Takeaways, Limitations

Takeaways:
The emergence of large-scale heterogeneous inference models available as open source lowers the barrier to entry for inference model research and development.
Successful development of a model that simultaneously provides excellent inference performance and efficiency.
Increased user convenience with dynamic inference toggle feature.
Expanding industrial applicability by providing an open license for commercial use.
Limitations:
This paper lacks a detailed description of the model's performance evaluation.
Lack of specific information about the size and quality of the additional training dataset.
Further evaluation of generalization performance across various inference tasks is needed.
👍