/
/
Daily Arxiv
Daily Arxiv
世界中で発行される人工知能関連の論文をまとめるページです。
このページはGoogle Geminiを活用して要約し、非営利で運営しています。
論文の著作権は著者および関連機関にあり、共有する際は出典を明記してください。
SACL: Understanding and Combating Textual Bias in Code Retrieval with Semantic-Augmented Reranking and Localization
Towards Provable (In)Secure Model Weight Release Schemes
Semantic Scene Graph for Ultrasound Image Explanation and Scanning Guidance
IndieFake Dataset: A Benchmark Dataset for Audio Deepfake Detection
These Are Not All the Features You Are Looking For: A Fundamental Bottleneck in Supervised Pretraining
In-Context Learning Strategies Emerge Rationally
Fake it till You Make it: Reward Modeling as Discriminative Prediction
Semantic Preprocessing for LLM-based Malware Analysis
PCDVQ: Enhancing Vector Quantization for Large Language Models via Polar Coordinate Decoupling
TracLLM: A Generic Framework for Attributing Long Context LLMs
TaxaDiffusion: Progressively Trained Diffusion Model for Fine-Grained Species Generation
Composite Flow Matching for Reinforcement Learning with Shifted-Dynamics Data
Explainability of Large Language Models using SMILE: Statistical Model-agnostic Interpretability with Local Explanations
Thinkless: LLM Learns When to Think
A3: an Analytical Low-Rank Approximation Framework for Attention
Search and Refine During Think: Autonomous Retrieval-Augmented Reasoning of LLMs
JointDiT: Enhancing RGB-Depth Joint Modeling with Diffusion Transformers
Energy Matching: Unifying Flow Matching and Energy-Based Models for Generative Modeling
AI-Driven Sentiment Analytics: Unlocking Business Value in the E-Commerce Landscape
Towards Adaptive Memory-Based Optimization for Enhanced Retrieval-Augmented Generation
AirCache: Activating Inter-modal Relevancy KV Cache Compression for Efficient Large Vision-Language Model Inference
Will LLMs be Professional at Fund Investment? DeepFund: A Live Arena Perspective
Revealing higher-order neural representations of uncertainty with the Noise Estimation through Reinforcement-based Diffusion (NERD) model
Zero-TIG: Temporal Consistency-Aware Zero-Shot Illumination-Guided Low-light Video Enhancement
PP-DocBee: Improving Multimodal Document Understanding Through a Bag of Tricks
CREStE: Scalable Mapless Navigation with Internet Scale Priors and Counterfactual Guidance
Markets with Heterogeneous Agents: Dynamics and Survival of Bayesian vs. No-Regret Learners
Reward-Guided Speculative Decoding for Efficient LLM Reasoning
UP-VLA: A Unified Understanding and Prediction Model for Embodied Agent
DisCoPatch: Taming Adversarially-driven Batch Statistics for Improved Out-of-Distribution Detection
Materialist: Physically Based Editing Using Single-Image Inverse Rendering
Representation Learning of Lab Values via Masked AutoEncoders
Lagrangian Index Policy for Restless Bandits with Average Reward
SIDA: Social Media Image Deepfake Detection, Localization and Explanation with Large Multimodal Model
InfiniCube: Unbounded and Controllable Dynamic 3D Driving Scene Generation with World-Guided Video Models
Pretrained Reversible Generation as Unsupervised Visual Representation Learning
MvKeTR: Chest CT Report Generation with Multi-View Perception and Knowledge Enhancement
GASP: Efficient Black-Box Generation of Adversarial Suffixes for Jailbreaking LLMs
ToolScan: A Benchmark for Characterizing Errors in Tool-Use LLMs
Recall and Refine: A Simple but Effective Source-free Open-set Domain Adaptation Framework
InterFormer: Effective Heterogeneous Interaction Learning for Click-Through Rate Prediction
Prompting with Phonemes: Enhancing LLMs' Multilinguality for Non-Latin Script Languages
Advanced computer vision for extracting georeferenced vehicle trajectories from drone imagery
Rapid Gyroscope Calibration: A Deep Learning Approach
HERMES: temporal-coHERent long-forM understanding with Episodes and Semantics
A GREAT Architecture for Edge-Based Graph Problems Like TSP
ClimateIQA: A New Dataset and Benchmark to Advance Vision-Language Models in Meteorology Anomalies Analysis
MockLLM: A Multi-Agent Behavior Collaboration Framework for Online Job Seeking and Recruiting
Is my Data in your AI Model? Membership Inference Test with Application to Face Images
PuriDefense: Randomized Local Implicit Adversarial Purification for Defending Black-box Query-based Attacks
Continual Learning as Computationally Constrained Reinforcement Learning
Efficient Image Generation with Variadic Attention Heads
Smart Ride and Delivery Services with Electric Vehicles: Leveraging Bidirectional Charging for Profit Optimisation
From Memories to Maps: Mechanisms of In-Context Reinforcement Learning in Transformers
Graphs Meet AI Agents: Taxonomy, Progress, and Future Opportunities
Taming the Untamed: Graph-Based Knowledge Retrieval and Reasoning for MLLMs to Conquer the Unknown
Exploring Big Five Personality and AI Capability Effects in LLM-Simulated Negotiation Dialogues
Doppelganger Method: Breaking Role Consistency in LLM Agent via Prompt-based Transferable Adversarial Attack
Metis-RISE: RL Incentivizes and SFT Enhances Multimodal Reasoning Model Learning
Fast Monte Carlo Tree Diffusion: 100x Speedup via Parallel Sparse Planning
NFISiS: New Perspectives on Fuzzy Inference Systems for Renewable Energy Forecasting
The State of Large Language Models for African Languages: Progress and Challenges
Structuring the Unstructured: A Multi-Agent System for Extracting and Querying Financial KPIs and Guidance
Super Co-alignment for Sustainable Symbiotic Society
Improving Human-AI Coordination through Online Adversarial Training and Generative Models
WiS Platform: Enhancing Evaluation of LLM-Based Multi-Agent Systems Through Game-Based Analysis
Review learning: Real world validation of privacy preserving continual learning across medical institutions
Whole-Body Conditioned Egocentric Video Prediction
MTSBench: Benchmarking Multivariate Time Series Anomaly Detection and Model Selection at Scale
HalluSegBench: Counterfactual Visual Reasoning for Segmentation Hallucination Evaluation
WorldVLA: Towards Autoregressive Action World Model
"What's Up, Doc?": Analyzing How Users Seek Health Information in Large-Scale Conversational AI Datasets
Potemkin Understanding in Large Language Models
SkLEP: A Slovak General Language Understanding Benchmark
Process mining-driven modeling and simulation to enhance fault diagnosis in cyber-physical systems
TITAN: Query-Token based Domain Adaptive Adversarial Learning
SmoothSinger: A Conditional Diffusion Model for Singing Voice Synthesis with Multi-Resolution Architecture
Optimising 4th-Order Runge-Kutta Methods: A Dynamic Heuristic Approach for Efficiency and Low Storage
Domain Knowledge-Enhanced LLMs for Fraud and Concept Drift Detection
Scalable Bayesian Low-Rank Adaptation of Large Language Models via Stochastic Variational Subspace Inference
Leveraging LLM-Assisted Query Understanding for Live Retrieval-Augmented Generation
Temporal-Aware Graph Attention Network for Cryptocurrency Transaction Fraud Detection
Pay Attention to Small Weights
Real-time and personalized product recommendations for large e-commerce platforms
RQdia: Regularizing Q-Value Distributions With Image Augmentation
CA-I2P: Channel-Adaptive Registration Network with Global Optimal Selection
A Systematic Review of Human-AI Co-Creativity
Holistic Surgical Phase Recognition with Hierarchical Input Dependent State Space Models
On Uniform Weighted Deep Polynomial approximation
Exploring Adapter Design Tradeoffs for Low Resource Music Generation
Detecting Referring Expressions in Visually Grounded Dialogue with Autoregressive Language Models
Small Encoders Can Rival Large Decoders in Detecting Groundedness
Hyperspherical Variational Autoencoders Using Efficient Spherical Cauchy Distribution
Integrating Vehicle Acoustic Data for Enhanced Urban Traffic Management: A Study on Speed Classification in Suzhou
DiLoCoX: A Low-Communication Large-Scale Training Framework for Decentralized Cluster
Agent-RewardBench: Towards a Unified Benchmark for Reward Modeling across Perception, Planning, and Safety in Real-World Multimodal Agents
From On-chain to Macro: Assessing the Importance of Data Source Diversity in Cryptocurrency Market Forecasting
$T^3$: Multi-level Tree-based Automatic Program Repair with Large Language Models
BitMark for Infinity: Watermarking Bitwise Autoregressive Image Generative Models
Task-Aware KV Compression For Cost-Effective Long Video Understanding
Load more
Holistic Surgical Phase Recognition with Hierarchical Input Dependent State Space Models
Created by
Haebom
作者
Haoyang Wu, Tsun-Hsuan Wang, Mathias Lechner, Ramin Hasani, Jennifer A. Eckhoff, Paul Pak, Ozanan R. Meireles, Guy Rosman, Yutong Ban, Daniela Rus
概要
本論文は、ロボット手術の手術プロセス分析において、手術画像の長い持続時間による困難を解決するために階層入力依存状態空間モデルを提案する。既存のTransformerモデルの制限的な処理速度の問題を解決するために、線形スケーリング特性を持つ状態空間モデルを活用して、全画像に対する意思決定を可能にする。これは、局所的およびグローバルな動力学の両方を捕捉する時間的一貫性を維持する視覚的特徴抽出器を統合し、局所的動力学を効果的に捕捉する局所集約状態空間モデルブロックと、画像全体の時間的依存性をモデル化するグローバル関係状態空間モデルブロックとからなる。離散的および連続的な指導方式を組み合わせたハイブリッド学習戦略を使用し、Cholec80、MICCAI2016、Heicholeデータセットで従来の最高性能モデルよりもかなり向上した結果を示した。
Takeaways、Limitations
•
Takeaways:
◦
ロボット手術画像解析における長い画像処理の難しさを効果的に解決する新しいアプローチの提示
◦
状態空間モデルの利点を活用し、効率的な演算と精度向上を同時に達成。
◦
局所的およびグローバルな動力学の両方を考慮した手術過程分析の精度向上
◦
ハイブリッドマップ方式によるモデルパフォーマンスの向上。
◦
さまざまなデータセットで従来の最高性能モデルと比較して性能向上を実験的に検証。
•
Limitations:
◦
コード公開は論文採用以来、現在はコードアクセス不可。
◦
様々な手術タイプの一般化性能に関する追加研究の必要性
◦
状態空間モデルの複雑さと学習時間の追加分析が必要
PDFを見る
Made with Slashpage