Daily Arxiv

This is a page that curates AI-related papers published worldwide.
All content here is summarized using Google Gemini and operated on a non-profit basis.
Copyright for each paper belongs to the authors and their institutions; please make sure to credit the source when sharing.

Nemotron-H: A Family of Accurate and Efficient Hybrid Mamba-Transformer Models

Created by
  • Haebom

Author

NVIDIA, :, Aaron Blakeman, Aarti Basant, Abhinav Khattar, Adithya Renduchintala, Akhiad Bercovich, Aleksander Ficek, Alexis Bjorlin, Ali Taghibakhshi, Amala Sanjay Deshmukh, Ameya Sunil Mahabaleshwarkar, Andrew Tao, Anna Shors, Ashwath Aithal, Ashwin Poojary, Ayush Dattagupta, Balaram Buddharaju, Bobby Chen, Boris Ginsburg, Boxin Wang, Brandon Norick, Brian Butterfield, Bryan Catanzaro, Carlo del Mundo, Chengyu Dong, Christine Harvey, Christopher Parisien, Dan Su, Daniel Korzekwa, Danny Yin, Daria Gitman, David Mosallanezhad, Deepak Narayanan, Denys Fridman, Dima Rekesh, Ding Ma, Dmytro Pykhtar, Dong Ahn, Duncan Riach, Dusan Stosic, Eileen Long, Elad Segal, Ellie Evans, Eric Chung, Erick Galinkin, Evelina Bakhturina, Ewa Dobrowolska, Fei Jia, Fuxiao Liu, Gargi Prasad, Gerald Shen, Guilin Liu, Guo Chen, Haifeng Qian, Helen Ngo, Hongbin Liu, Hui Li, Igor Gitman, Ilia Karmanov, Ivan Moshkov, Izik Golan, Jan Kautz, Jane Polak Scowcroft, Jared Casper, Jarno Seppanen, Jason Lu, Jason Sewall, Jiaqi Zeng, Jiaxuan You, Jimmy Zhang, Jing Zhang, Jining Huang, Jinze Kirthi Sivamani, Krzysztof Pawelec, Kumar Anik, Kunlun Li, Lawrence McAfee, Leon Derczynski, Lindsey Pavao, Luis Vega, Lukas Voegtle, Maciej Bala, Maer Rodrigues de Melo, Makesh Narsimhan Sreedhar, Marcin Chochowski, Markus Kliegl, Marta Stepniewska-Dziubinska, Matthieu Le, Matvei Novikov, Mehrzad Samadi, Michael Andersch, Michael Evans, Miguel Martinez, Mike Chrzanowski, Mike Ranzinger, Mikolaj Blaz, Misha Smelyanskiy, Mohamed Fawzy, Mohammad Shoeybi, Mostofa Patwary, Nayeon Lee, Nima Tajbakhsh, Ning Xu, Oleg Rybakov, Oleksii Kuchaiev, Olivier Delalleau, Osvald Nitski, Parth Chadha, Pasha Shamis, Paulius Micikevicius, Pavlo Molchanov, Peter Dykas, Philipp Fischer, Pierre-Yves Aquilanti, Piotr Bialecki, Prasoon Varshney, Pritam Gundecha, Przemek Tredak, Rabeeh Karimi, Rahul Kandu, Ran El-Yaniv, Raviraj Joshi, Roger Waleffe, Ruoxi Zhang, Sabrina Kavanaugh, Sahil Jain, Samuel Kriman, Sangkug Lym, Sanjeev Satheesh, Saurav Muralidharan, Sean Narenthiran, Selvaraj Anandaraj, Seonmyeong Bak, Sergey Kashirsky, Seungju Han, Shantanu Acharya, Shaona Ghosh, Sharath Turuvekere Sreenivas, Sharon Clay, Shelby Thomas, Shrimai Prabhumoye, Shubham Pachori, Shubham Toshniwal, Shyamala Prayaga, Siddhartha Jain, Sirshak Das, Slawek Kierat, Somshubra Majumdar, Song Han, Soumye Singhal, Sriharsha Niverty, Stefania Alborghetti, Suseella Panguluri, Swetha Bhendigeri, Syeda Nahida Akter, Szymon Migacz, Tal Shiri, Terry Kong, Timo Roman, Tomer Ronen, Trisha Saar, Tugrul Konuk, Tuomas Rintamaki, Tyler Poon, Ushnish De, Vahid Noroozi, Varun Singh, Vijay Korthikanti, Vitaly Kurin, Wasi Uddin Ahmad, Wei Du, Wei Ping, Wenliang Dai, Wonmin Byeon, Xiaowei Ren, Yao Xu, Yejin Choi, Yian Zhang, Ying Lin, Yoshi Suhara, Zhiding Yu, Zhiqi Li, Zhiyu Li, Zhongbo Zhu, Zhuolin Yang, Zijia Chen

Outline

This paper proposes the Nemotron-H model, which focuses on building an inference-efficient model to improve inference time scalability. Nemotron-H is a Mamba-Transformer hybrid model with 8B and 56B/47B sizes. It replaces most of the self-attention layers of existing Transformer models with Mamba layers that have a fixed computational load and per-token memory usage, thereby reducing inference costs. Experimental results show that Nemotron-H achieves accuracy comparable to or better than other state-of-the-art open-source Transformer models, such as Qwen-2.5 and Llama-3.1, and achieves up to 3x faster inference speed. Furthermore, we use a novel pruning and knowledge distillation technique called MiniPuzzle to generate a 47B model (Nemotron-H-47B-Base) from the 56B model, improving inference speed by 20%. Finally, we introduce an FP8-based training recipe that achieves results comparable to BF16-based training and apply it to 56B model training. We also disclose model checkpoints based on Hugging Face and NeMo assistance.

Takeaways, Limitations

Takeaways:
Presenting the possibility of efficient inference using Mamba layers.
Achieve improved inference speed compared to existing state-of-the-art models.
Reducing model size and maintaining performance using the MiniPuzzle technique.
Presenting an efficient training method using FP8-based training recipes.
Improving accessibility by releasing models as open source.
Limitations:
Further research is needed to determine whether the performance improvements of the Mamba layer can be generalized to all types of tasks.
Further research is needed on the generality of the MiniPuzzle technique and its applicability to other models.
Further in-depth analysis of the stability and generalization performance of FP8 training is needed.
Additional comparative analysis of models of different sizes may be required.
👍